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Preface

This dissertation is based upon research done in physics and network science over the
course of my PhD.

The Introduction is meant as a pedagogical review of topics in network science that
could be used as an entry-point to the field. This extended background aims to convey
a perspective on modeling and understanding systems applicable to a far broader set of
applications than the network science of this thesis. Most of the information presented
is standard material in the field although some topics are original unpublished work, for
instance the general configuration model of Section 1.2.2.

Chapter 2 presents two unpublished projects on network group structure I have in-
dependently pursued. Chapter 3 is based upon two information-theoretic endeavors
completed in collaboration with Mark Newman and Alec Kirkley. The first, Section 3.1,
is currently under review [66] while the second, Section 3.2, has been published [65].
Chapter 4 is based upon published work on hierarchies with Mark Newman [67].

A significant amount of additional material is presented in the Appendices. Ap-
pendix A supplements the Introduction with self-contained reviews of the fields of statis-
tics, physics, and information theory relevant to my work. Appendices B, C, and D provide
details supporting Chapters 2, 3, and 4 respectively.
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Abstract

Many systems across science can be meaningfully represented as networks of simple
interactions. Within networks of metabolic pathways, transportation links, neuronal
connections, outcomes of sports matches, and social ties, the patterns and directions
of data often exhibit collective behavior. In this thesis we focus on characterizing two
common structural features of these networks: group structure and hierarchy.

In real-world networks we often find communities — groups of nodes which interact
with each other more frequently than with nodes outside their group. Common examples
include friend groups, functional neuronal groups, or ecological niches. Despite their
ubiquity, network data does not often come to us already labeled with this group structure;
it must be algorithmically inferred from the network alone. In this work, we describe
a number of refinements of existing community detection models which allow us to:
discover more and smaller groups, directly measure the in-group preference within the
system, and measure the variation in connections within groups.

When the ground truth community structure of a network is available, the outputs
of these community detection algorithms are often compared against that truth in an
information theoretic manner. We discuss improvements to this framework that address
a bias towards algorithms which find an excessive number of communities and better
quantify relevant information costs. We further demonstrate how the conclusions drawn
depend on the form of this measure in extensive tests on synthetic networks.

Similarly, when we observe directed relationships such as dominance interactions
among animals or humans, the directions of faculty hiring among universities, or wins
and losses in games and sports, hierarchies routinely emerge. In this work we draw an
analogy between fermion energy and competitor rank in these hierarchies to define a
notion of the collective "temperature" of a hierarchy which we may then measure. This
parameter then also indicates the strictness of the hierarchy, or equivalently the number
of distinct levels of play. We find a good deal of variation in this measured temperature:
sports rankings tend to be hot and unpredictable, animal hierarchies are cold and rigid,
while human social hierarchies are lukewarm — somewhere in the middle.

Taken together, our work has not only enabled new insights about longstanding prob-
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lems of network science but also offered a path to understand and measure their nature.
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Chapter 1

Introduction

1.1 Networks and complex systems

Networks are often used to represent complex systems composed of many parts, such as
individual people, animals, or atoms. Their study focuses on the nature and structure
of interactions between these components. Just as a universe of only non-interacting
particles would be a lifeless soup, a collection of people who never interact is boring and
unrealistic to study. The network of interactions between the many pieces makes the
system “complex.”

1.1.1 Representing network data

In a network (or "graph") these components are abstractly represented as nodes ("vertices")
and the interactions are represented as edges, lines that connect interacting nodes with
each other. This simple framework is flexible enough to span a rich variety of applications
and data under various interpretations of the nodes and edges.

A =

���������

0 1 0 0 0 1
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0 1 0 1 1 1
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0 1 1 1 0 1
1 1 1 1 1 0
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Figure 1.1: Network of interactions observed by Setia et al. [120] among 𝑛 = 6 orangutans
represented (a) as a graph and (b) as an adjacency matrix A. (c) The node degrees k, the
number of interactions of each orangutan.
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An example network is given in Figure 1.1a. There the colored nodes represent 6
Indonesian flanged male orangutans who are connected by an edge if a vocalization
between them was observed in a study by Setia et al. [120]. As reflected in the graph, 5 of the
6 orangutans form a clique of nodes that each interact with each other while the remaining
ape represented in red interfaced with only the orange and magenta orangutans.

Such a network on 𝑛 nodes is often alternatively represented by a 𝑛 × 𝑛 adjacency
matrix A, whose entry 𝐴𝑖 𝑗 for 𝑖 , 𝑗 = 1, ..., 𝑛 is equal to 1 if nodes 𝑖 and 𝑗 interact and 0
otherwise. Figure 1.1b shows the orangutan network in this format with the rows and
columns labeled by the orangutan they reference. This matrix and its properties naturally
convey information about the network. For example the vector k of row (or column) sums
of the adjacency matrix

𝑘𝑖 =
𝑛∑
𝑗=1

𝐴𝑖 𝑗 , 𝑖 = 1, ..., 𝑛, (1.1)

gives the degree of each node, the total number of edges connected to it.
These degrees of our apes are given in Figure 1.1c. The red orangutan is the only

node with degree 2, while the orange and magenta orangutans have degree 5 as they both
connect to every other orangutan. This simple measure of counting connections captures
a sense of centrality within the network as certain orangutans appear more disposed to
interact than others. This sort of variation in the degrees is typical of real networks,
particularly within large data sets. We further discuss how the distribution of the degrees
can be modeled and interpreted in Section 1.2.2.

The edges in Figure 1.1 are bidirectional since they symmetrically represent whether any
interaction occurred between a pair of orangutans. The network is therefore an undirected
graph and has a symmetric adjacency matrix. Although such undirected graphs are
very common, and the focus of much of this thesis, many systems possess asymmetric
interactions. In fact, in their observations Setia et al. not only recorded whether a pair
interacted but also which orangutan was dominant over the other from their pattern of
vocalizations. We can add this layer of information to the network by converting it to
a directed graph, where each edge is now represented by an arrow that points from the
dominant "winner" of the interaction to the submissive "loser."

The original network of Fig. 1.1 is also a simple graph as interactions are binary – two
nodes either do or do not connect and no node connects to itself. However some pairs
of orangutans interacted more than once over the course of the study, a feature we can
represent with a multigraph where nodes can connect with more than one edge and self-

2



A =

���������

0 1 0 0 0 0
0 0 1 3 4 0
0 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 0
1 4 1 2 1 0

���������
kout =

��������
�

1
8
1
2
1
9

���������
(b)(a) (c)

kin =

��������
�

1
6
3
6
6
0

���������
(d)

Figure 1.2: Directed multigraph of dominance interactions observed among 𝑛 = 6
orangutans [120] represented (a) as a graph and (b) as an adjacency matrix A. (c) The
out-degrees kout and (d) the in-degrees kin are also given, respectively counting the
number of times each orangutan exhibits a dominant or submissive interaction.

edges can connect a node to itself. Although self-edges are not present in the orangutan
context, such self-interactions arise in other settings. In a food web of predation among
species, for example, cannibalism within a species is represented with a self-edge.

By incorporating these generalizations, the network of Figure 1.2a represents the full
detail of the data set of Setia et al. [120]. Where the original network of Figure 1.1 repre-
sents if a pair of orangutans interact, this new network gives fuller context as to the nature
of the interactions. The adjacency matrix in Figure 1.2b is no longer a symmetric binary
matrix as 𝐴𝑖 𝑗 now represents the number of directed edges from node 𝑖 to node 𝑗. This
asymmetry generates two distinct notions of degree. Figure 1.2c contains the row sums
of the matrix, the out-degrees kout, that indicate the number of edges pointing away from a
given node, in this case the number of times each orangutan had a dominant interaction.
In Figure 1.2d the column sums of the matrix give the in-degrees kin, the count of edges
pointing towards each node, the number of times each orangutan had a submissive inter-
action. The directions of the data and resulting degrees give further insight to the social
world of the orangutans. For example the magenta orangutan has 𝑘out

𝑖 = 9, 𝑘in
𝑖 = 0 and so

was dominant in each of his 9 interactions, suggesting that he holds a prime position in
the orangutans’ social hierarchy.

Further adornments of networks are often made to represent further detail. In a trade
network each edge could carry a continuous weight that reports trade volume between
two countries, an example of a weighted graph represented by a continuous adjacency
matrix [45]. Edges can also be differentiated by their type, for example friendships in a
social network may be associated to different contexts like work, hobbies, or social media
forming a multilayer network of connections between people [23, 73].

Higher-order interactions between triplets and larger groups of nodes may be also
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be represented either as hypergraphs or bipartite networks, although they are beyond
our present scope. In this thesis we focus on interactions between only pairs of nodes,
so-called dyadic interactions. In fact most of this thesis focuses only on the nature of the
simple, undirected networks exemplified by Figure 1.1. Only in Section 4 do we consider
directions of edges and the patterns they reveal.

Although adding increasingly descriptive context and metadata to networks helps to
paint a fuller picture of any particular application, by stripping systems down to a simple
pattern of interactions it is possible to treat them within a unified language of network
science and understand similarities and differences between them. In this thesis we focus
on two common structures found in networks across contexts, group and hierarchical
structure.

1.1.2 Group structure

The nodes that make up a network often possess distinct group identities. Animals are
distinguished by species, atoms differ by atomic number, and students belong to various
clubs and social groups. These group labels may then influence the interactions among
the nodes as, for example, students are often friends with others in the same school club.
Figure 1.3 gives four examples of real networks where the color of each node indicates
which group it belongs to. In each system these group affiliations guide the pattern of
connections as nodes of the same group share the same structural role.

Figure 1.3a contains a network of 616 American football matches played among 115
Division IA colleges in the 2000 regular season [57]. Each year these football teams group
into conferences that agree to play a certain number of matches, often 8, against other
teams in the same conference. While matches out-of-conference are permitted, they occur
more rarely as they are organized on an ad hoc basis from year to year. The conference
system thus gives teams an assortative preference to play teams of the same group. Over
the course of the season the network of matches then carries a clear signature of the
conferences that inform them.

Similarly assortative structure is found in Figure 1.3b, a network of 105 political books
frequently co-purchased on Amazon.com near the 2004 U.S. presidential election. Here
the books are colored by the political lean of their content, characterized by V. Krebs in
unpublished work. Books of the same political bent are typically purchased together,
either both liberal or both conservative. Rarely does someone order both a conservative
and liberal book in the data set. In this case the observed assortative structure is not
imposed by a collective agreement like the football conference system but rather emerges
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Figure 1.3: Four examples of community structure in networks. (a) American football
matches among Division IA colleges in the 2000 regular season [57]. Most matches occur
within the labeled "conferences" that the teams belong to. (b) Network of political books
frequently co-purchased on Amazon.com near the 2004 U.S. presidential election labeled
by political lean. (c) Network of characters in Shakespeare’s Romeo and Juliet where edge
thickness indicates frequency of interaction. The house each character belongs to in the
work, Montague or Capulet, is highlighted. (d) Bipartite network of plant-pollinator
interactions [16]

.
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from individual decisions as an effect of systemic political polarization.
In networks of social ties, people and animals often organize into tightly knit communi-

ties that prefer to interact amongst themselves. Figure 1.3c contains a (fictional) example
of such a network among characters in Shakespeare’s Romeo and Juliet. Character inter-
actions, defined as subsequent appearances in the same scene, form the edges of this
multigraph, where the edge thickness reflects the frequency of the interaction. In the
play most characters belong to one of two groups, either Romeo’s House of Montague or
Juliet’s House of Capulet. Interactions between characters are indeed mostly contained
within each house. The narrative, however, revolves around the titular exception to this
pattern. Later in this thesis we will observe similar patterns of communities across social
networks and quantify the extent to which their group boundaries are crossed.

Not all group structures are assortative in this manner. In fact many network data sets
are bipartite, meaning they consist of two groups of nodes that never interact within their
own group, only with the opposite group: a fully disassortative structure. Figure 1.3d gives
an example of a bipartite plant-pollinator network. In it 13 species of Brazilian oil-flowers
are connected to which of 13 species of pollinators visited them over the course of a study
by Berezza et al. [16]. In this setting the nodes are naturally sorted by their role as either
a plant or a pollinator. Being a bipartite network, all interactions occur only between a
plant and a pollinator, never directly between two plants or two pollinators.

In these examples and beyond networks possess a variety of group structures, distin-
guished both in the number of groups present and how those groups inform the pattern
of interactions. In the four examples of Figure 1.3, group identities can be gleaned from
context outside the network of interactions. However in many contexts only the pattern
of connections is known, although nodes may still meaningfully belong to groups that
influence that structure.

In this setting a key task of network science is community detection, to analyze a network
and identify if group structure exists, identify the groups, and characterize their structural
relationships. A variety of approaches have been developed for this task, including novel
methods discussed in Section 2 of this thesis. The groups inferred from the network can
then be interpreted in their own right or compared to known group labels. In Section 3
we will discuss and refine how the difference between these inferred and true groups can
be quantified.
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Figure 1.4: Four examples of hierarchy structure in networks. (a) American football
matches played in the 2022 Big Ten conference football season [2]. The hierarchical
structure is represented vertically, with better teams located higher. Arrows run from the
winner to the loser of a match, colored green if the higher ranked team wins, red if the
lower ranked team wins. (b) Consumer preferences between pairs of sodas [46]. (c)
Observed dominance interactions (pecks) among 11 chickens [87]. (d) Unreciprocated
friendship nominations among 20 high school students [128].

1.1.3 Hierarchy structure

As in our orangutan example, network interactions are often directed. Edges in a directed
graph variously run from a source to a target, a winner to a loser, a leader to a follower.
Across a system these asymmetries often follow a coherent direction within a hierarchy of
the nodes. In a sports context this may be a hierarchy of skill where a more skilled player
is likely to prevail over a less skilled opponent. In social settings "dominance interactions"
tend to be won by the higher status individual. In Figure 1.4, four examples of such
directed networks are given. In each case the hierarchy of the nodes is plotted along the
vertical axis.
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Figure 1.4a contains football matches played within the 2022 Big Ten football confer-
ence [2]. Each arrow points from the winner to the loser of a match, information that was
suppressed in the undirected Figure 1.3a. The University of Michigan was undefeated in
this (carefully chosen) season as indicated by all arrows pointing away from its node and
by its position at the top of the football hierarchy. In this case placement on the hierarchy
is meant to reflect strength in the game of football, and we would expect that better teams
win more often than lower ranked ones. Particularly we may assume that the outcome
of any given match is driven by the difference in skill between the participating teams.
Although the teams and fans are generally aware of these relative strengths, there is not
a "true" hierarchy to refer to like the conference group structure. The positions in the
hierarchy must instead be deduced from the observed matches.

There are many ways to determine a hierarchy from the match outcomes. Collegiate
football formalizes this inference through an annual poll of team coaches to determine
the highest ranked teams who may then advance to the post-season playoff bracket. In
Figure 1.4a, the vertical hierarchy is instead arranged in order to maximize the number of
times the higher ranked team wins (the 57 green arrows) and minimize the upset victories
(the 7 red arrows). The other networks of Figure 1.4 are likewise arranged to minimize
such violations of their hierarchies. We discuss other methods for arriving at such a ranking
in Section 1.2.4.

The presence of upsets means that the data does not fully respect the hierarchy. One
might hope that there is some other ordering of the teams that is fully coherent, lacking
any such upsets, but the intransitivity of the results prevents this. In the football example
Minnesota beat Nebraska, Nebraska beat Iowa, and Iowa beat Minnesota in a rock-paper-
scissors arrangement. One of these three matches would therefore be recorded as an
"upset" under any ordering of the teams. In fact any ordering of this season will have at
least 7 upsets as in the ordering plotted in the figure. This tension between the hierarchy
and the realized results is analogous to how not all edges lie within the groups of Figure 1.3.
The degree to which the outcomes conform to a hierarchy gives insight to its strictness.

Many of the models used to describe hierarchies were initially developed and are often
used in the world of sports, yet similar concepts can be applied to understand status and
quality in other contexts. Figure 1.4b shows a hierarchy of 8 different flavored sodas. In
this network wins indicate if most assessors surveyed by Duineveld et al. prefer one soda
over another in a paired comparison study [46]. Again no total ordering of the sodas is
possible as the revealed preferences are not strictly transitive, although there are certain
sodas that generally fare better in these comparisons. Such surveys and inferences are
often used to make sense of A/B testing of various types of products and establish the
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aggregate consensus of quality and preferences. These methods are similarly used in
reinforcement learning to assess and tune large language model outputs based upon
human preferences [29].

Turning to animals, the social hierarchy of a flock of 11 Brown Leghorn chickens is
plotted in Figure 1.4c [87]. Here the arrows represent when one chicken pecks another but
is not pecked in return, taken as a sign of dominance. The chickens organize into a pecking
order where the higher chicken tends to peck the lower chicken on the ladder. This animal
behavior research is in fact the source of the phrase "pecking order" colloquially used to
refer to all sorts of hierarchies. In this flock of 11, the chicken at the bottom of the pecking
order is pecked by all above it while there is more competition and ambiguity at the top.

Figure 1.4d shows a similar social hierarchy, now of surveyed friendship nominations
among 20 students of a small U.S. high school [128]. Although we may think of friendship
as a two-way street, this reciprocity is not always borne out in survey data. Often student
A names student B as their friend but student B does not name student A back. We can
interpret this as a "win" for student B in the social hierarchy, and that they are likely of
higher social status than student A. In the school of this figure a clear hierarchy emerges
where higher status students consistently dominate the lower ranked students in this
manner.

Each of the directed network representations in Figure 1.3 foregoes further context
unique to each setting. The football match network, for example, neglects idiosyncratic
details like player injuries or home-field advantages that can influence the outcome of any
given match. Such events, however, do not have a clear analog within, say, the pecking
order of chickens. By reducing the systems down to a directed pattern of "wins" and
"losses," we can directly compare them to each other. In Chapter 4 of this thesis we discuss
how this framework enables us to observe how the nature and strength of these hierarchies
differ across settings.

1.2 Random graph models

This thesis leverages tools from many fields, including statistics, physics, computer sci-
ence, and information theory to understand networks. Appendix A offers background,
motivation, and derivations of many of the key concepts that we employ. The reviews
of each of these areas are meant to be concise and self-contained. Readers familiar with
these subjects may comfortably skip this background.

In this section, we apply these interdisciplinary techniques to model and measure the
group and hierarchy structures exemplified by the networks of Section 1.1. Through-
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out this analysis we apply these models to analyze selected examples of real networks,
demonstrating how they can illuminate various aspects of their network structure.

1.2.1 Erdős-Rényi graph model

We begin our exploration with the Erdős-Rényi (or "flat") random graph model. This
simple model serves as the basis of the more detailed structural models we later con-
sider. Although first studied by Solomonoff and Rapoport [122], the model is most closely
associated with the work of Erdős and Rényi [50], after whom it is named. In their founda-
tional work, both collaborations showed that despite its simplicity the Erdős-Rényi model
captures key properties observed in real networks.

The Erdős-Rényi model is often defined over simple graphs, characterized by binary
adjacency matrix entries 𝐴𝑖 𝑗 ∈ {0, 1}. In the canonical model, denoted as 𝐺(𝑛, 𝑝), there
is a fixed probability 𝑝 ∈ [0, 1] that an edge exists between any of the

(𝑛
2
)

possible pairs
of distinct nodes. Statistically, each entry follows an independent Bernoulli distribution,
akin to flipping

(𝑛
2
)

independent biased coins, where the probability 𝑝 of heads represents
the existence of an edge. Collecting these chances, the model likelihood of generating a full
network A given a choice of parameter 𝑝 is

𝑃(A|𝑝) =
∏
𝑖< 𝑗

𝑝𝐴𝑖 𝑗 (1 − 𝑝)1−𝐴𝑖 𝑗 = 𝑝𝑚(1 − 𝑝)(𝑛2)−𝑚 . (1.2)

When applying this model, we infer the latent parameter 𝑝 from our observation A. A
common frequentist approach is to identify the parameter value that maximizes the model
likelihood of the data. This optimum is known as the maximum-likelihood (ML) estimate

𝑝̂ML =
𝑚(𝑛
2
) ≈ 2𝑚

𝑛2 . (1.3)

This value, equal to the empirical density of the network, provides insight into the network’s
formation and can be extrapolated to make predictions about future observations.

In certain contexts, however, this maximum-likelihood estimate can be misleading.
Especially when we observe a small amount of data, there is an inherent ambiguity about
the "true" parameter value. Many possible values of 𝑝 could have generated the networkA,
yet we can only draw conclusions from the single observation. Reporting only the point
estimate 𝑝̂ML may not represent the full range of possible parameter values.

To incorporate this uncertainty, we adopt a Bayesian approach throughout this thesis.
Instead of focusing on a single point estimate, this framework represents our belief about
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likely parameter values as a distribution over 𝑝. To implement this, we first define a prior
distribution that contains our initial assumptions of reasonable parameter values before
observing any data. For our purposes, we use a uniform, maximum-entropy prior over the
interval, 𝑃(𝑝) = 1. This choice is as agnostic as possible, treating each potential value of 𝑝
as equally plausible before considering the data.

Using Bayes’ law, we then calculate the posterior distribution of likely parameter values
given our observed network

𝑃(𝑝|A) = 𝑃(A|𝑝)𝑃(𝑝)
𝑃(A)

=

[(
𝑛
2

)
+ 1

] ( (𝑛
2
)
𝑚

)
𝑝𝑚(1 − 𝑝)(𝑛2)−𝑚 . (1.4)

Here, the distribution is normalized by the model evidence

𝑃(A) =
∫

𝑃(A|𝑝)𝑃(𝑝)𝑑𝑝

=
1(𝑛

2
) + 1

( (𝑛
2
)
𝑚

)−1
, (1.5)

an important quantity we will return to later this section. In this model, the poste-
rior 𝑃(𝑝|A) is maximized at the same value as the likelihood, 𝑝̂MAP = 𝑝̂ML, but the width
of the posterior distribution reflects the certainty of our inference.

For instance, we can apply this Bayesian model to a real social network of 2218 friend-
ships among 324 Facebook profiles [17] illustrated in Figure 1.5a. Figure 1.5b displays
the posterior distribution 𝑃(𝑝|A) from Eq. (1.4) for this network, showing likely values of
the connection probability 𝑝. Since this is a large data set, the posterior is tightly peaked
around its maximum, 𝑝̂MAP ≈ 0.042, although nearby values of the parameter are not en-
tirely excluded. As more data is gathered, this posterior naturally narrows as we become
increasingly confident in our inference — a concept further demonstrated in Figure A.4.

The average degree of this network is 𝑐 = ⟨𝑘⟩ ≈ 13.7, meaning each profile, on average,
is friends with just a small fraction of the 𝑛 = 324 potential nodes. This behavior is typical
of large networks, where the number of connections of each node 𝑐 tends to stay constant
as the number of nodes 𝑛 grows. For example, an individual is likely to maintain roughly
the same number of friendships whether they live in a town of ten thousand of a city of
ten million. In most contexts it is neither realistic nor sustainable for the mean degree to
grow proportionally with the size of the network indefinitely.

In large networks this bound also implies that the probability 𝑝 of any specific pair of
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Figure 1.5: (a) A social network of friendships among Facebook profiles [17]. A path of 6
edges, highlighted in red, connecting the leftmost and rightmost nodes. (b) Posterior
distribution 𝑃(𝑝|A) of the connection probability 𝑝 for this network in the
Erdős-Rényi model. The MAP estimate 𝑝̂MAP ≈ 0.042 is marked by the vertical line.

nodes being connected must be very small. In the Erdős-Rényi model, the average degree
is

𝑐 = 𝑝(𝑛 − 1) (1.6)

since each node is connected by an average of 𝑝 edges to each of the 𝑛 − 1 other nodes.
Therefore in the constant degree limit 𝑐 ∼ O(1), the probability 𝑝 decreases as 𝑝 ∼ O(1/𝑛).
As this connection probability approaches 0, we refer to this as a sparse limit, contrasting
with dense graphs that retain a markedly positive density 𝑝 even in a large system.

Within this realistic regime, the Erdős-Rényi random graph helps to explain the global
connectedness observed in real networks. In the sparse Facebook network depicted in
Fig. 1.5a, even though the probability 𝑝 ≈ 0.04 of a direct connection is small, a path
of friendships connecting any two profiles can still be found. The figure highlights a
path spanning six friendships between the leftmost and rightmost nodes. Even in very
large networks, where each node connects to a vanishingly small fraction of the others,
it is often possible to trace a (surprisingly short) path between any two nodes. This
phenomenon is famously echoed in the "six degrees of separation" notion popularized by
Stanley Milgram’s small world experiment, which suggests that any two people can be
linked by six social connections [90, 134]. Although this is not strictly true empirically
(e.g. some pairs in our Facebook network require seven connections), the spirit tends to
hold in social data.

In network language, a path of links between two people indicates that they belong to
the same connected component of nodes. In a general graph, not all nodes need to be con-
nected to each other in this manner. For example, some individuals live in communities
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Figure 1.6: Samples of an Erdős-Rényi random graph on 𝑛 = 50 vertices at edge
probabilities 𝑝 = 0.004, 0.02, 0.1 corresponding to average degrees 𝑐 = 0.2, 1, 5. Nodes are
colored by the connected component they belong to. The middle panel shows the
emergence of the giant component at the transition point 𝑐 = 1.

that are entirely isolated from the rest of the world. In such cases, the nodes of a network
may split into multiple connected components. Typically, however, one of these compo-
nents will encompass the majority of the nodes, as most individuals can indeed connect to
most others. This prominent sub-network is known as the giant connected component and
is a feature of most realistic networks.

The common emergence of a giant component can be understood through the Erdős-
Rényi random graph model. As illustrated in Figure 1.6, when a network has very few
edges they are each isolated, and the connected components are single nodes or edges
(represented by different colors in the figure). As additional edges are added, these smaller
connected components begin to coalesce into a single giant component which ultimately
connects nearly every node in the network.

Between these extremes, the Erdős-Rényi random graph undergoes a phase transition
at average degree 𝑐 = 1. When 𝑐 < 1, the connected components tend to be small and
isolated, of size 𝑂(1) in the large 𝑛 limit. As 𝑐 surpasses 1, a giant component suddenly
emerges, forming a connected component that grows extensively as 𝑂(𝑛) with the size of
the network and so contains a persistent fraction of all nodes [122].

Once the giant component appears it is also quite easy to traverse. The maximum
number of steps needed to connect any pair of nodes, known as the diameter, grows slowly
as O(log 𝑛), reflecting the small-world phenomenon [50]. Despite its simplicity, the Erdős-
Rényi model effectively captures and explains the connectivity properties observed in real
complex systems.

Although the Erdős-Rényi random graph reflects this common global property, we
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often seek a more comprehensive measure of how well the model captures the full de-
tails of the network. To evaluate this, we use the model evidence (or "marginal likeli-
hood") 𝑃(A) =

∫
𝑃(A|𝑝)𝑃(𝑝)𝑑𝑝 of Eq. (1.5). This represents the total probability that the

random graph could generate the network A, integrated over all possible values of the
unknown parameter 𝑝. By integrating out this uncertainty, the model can be interpreted
as a nonparametric distribution 𝑃(A) over all possible networks we could observe.

Model evidence serves as a natural criterion for model assessment. When comparing
two models, we prefer the one with the higher evidence as it is more likely to reproduce
our observation. Alternatively, as discussed in Appendix A.3, the distribution 𝑃(A)
corresponds to an encoding of the network, compressing its information content into a
binary string of length 𝐻(A) = − log2 𝑃(A)1.

The model with the higher evidence 𝑃(A) will thus have a shorter description
length 𝐻(A), and yield a more efficient, parsimonious compression. When modeling,
we can therefore equivalently pursue models with higher evidences or shorter descrip-
tion lengths of our observations. For the Erdős-Rényi model, the description length is

𝐻(A) = − log𝑃(A)

= log
[(
𝑛
2

)
+ 1

]
+ log

( (𝑛
2
)
𝑚

)
, (1.7)

resulting in a 𝐻(A) ≈ 13249.6 bit compression of the network of Facebook friends. In
later sections, we will observe how more realistic network models can more efficiently
compress real networks as they incorporate aspects of their structure beyond the overall
density.

The form of the model evidence in Eq. (1.5) also suggests an alternative microcanonical
formulation of the model2. In this telling, known as 𝐺(𝑛, 𝑚), the network is uniformly
distributed among all simple graphs with 𝑛 nodes and 𝑚 edges. Given the number of
ways that the 𝑚 indistinguishable edges can be arranged among the

(𝑛
2
)

potential node
pairs, the probability of any specific configuration is

𝑃(A|𝑚) =
( (𝑛

2
)
𝑚

)−1
. (1.8)

Here, the global number of edges 𝑚 replaces the local probability 𝑝 as the key parameter.
1Throughout this thesis, information will be reported in bits (base 2), though the choice of logarithm

base only changes results by a constant factor.
2The canonical and microcanonical designations of these models come from the corresponding ensembles

over configuration space in equilibrium statistical physics. See Appendix A.2 for more details.
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Since 𝑚 can be any integer from 0 to a maximum of
(𝑛
2
)

when all possible pairs are
connected, we can again adopt a uniform prior over the possibilities

𝑃(𝑚) = 1(𝑛
2
) + 1

. (1.9)

Together these distributions give the same model evidence as the canonical model,

𝑃(A) = 𝑃(A|𝑚)𝑃(𝑚) = 1(𝑛
2
) + 1

( (𝑛
2
)
𝑚

)−1
. (1.10)

Thus, we can describe the formation of any network through two ultimately equivalent
Erdős-Rényi stories. Canonically, a connection probability 𝑝 is first randomly chosen,
then each edge independently appears with this probability. Microcanonically, the total
number of edges 𝑚 is first randomly set, then the 𝑚 edges are collectively shuffled among
their possible positions.

Throughout this thesis, we describe many other network models using these equivalent
formulations, each offering a unique perspective on the network formation process. In the
canonical view, a network’s structure emerges from many small, independent decisions.
In contrast, the microcanonical framework describes network formation as governed by
one or more global constraints.

Depending on the context, either formulation may be more appropriate. Certain net-
works are designed under strict microcanonical constraints. For example, during a sports
season, there is typically a fixed total number of games played, but the specific matchups
among teams are shuffled. Microcanonical models are also commonly used as null hy-
potheses, allowing networks to be compared against variants that share certain observed
properties but are otherwise randomized. Outside these applications, this thesis primar-
ily presents models from a canonical perspective. This picture aligns with the view of
complex systems as decentralized and self-organizing, where emergent structures result
from local interactions rather than predefined global constraints.

Beyond the simple graphs we have discussed thus far, we will also consider a variant of
the Erdős-Rényi model defined over multigraphs in this thesis. This adaptation accommo-
dates scenarios where pairs of nodes are joined by multiple edges or where nodes connect
to themselves. This version of the model is not only more flexible than the simple graph
model but also more analytically tractable, a useful base for the more complex network
models we will build.

In this generalized model, the off-diagonal entries of the adjacency matrix are each in-
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dependently sampled from a Poisson distribution with expectation 𝜌, rather than a Bernoulli
distribution with expectation 𝑝. The Poisson distribution admits all non-negative inte-
gers 𝐴𝑖 𝑗 ∈ {0, 1, ...} rather than only binary values. Here, the parameter 𝜌 ≥ 0 sets the
density of the graph as the typical number of edges between each pair of nodes.

Self-edges, now present in the model, lead to non-zero diagonal elements 𝐴𝑖𝑖 equal
to twice the number of edges connecting node 𝑖 to itself. This convention ensures that
the row sums k of the adjacency matrix equal the vertex degrees. We model the number
of self-edges 𝐴𝑖𝑖/2 as a Poisson distribution with expectation 𝜌/2, ensuring the diagonal
elements 𝐴𝑖𝑖 are even while all matrix entries share the expectation 𝜌. Collecting these
assumptions, the multigraph likelihood is then

𝑃(A|𝜌) =
∏
𝑖< 𝑗

𝜌𝐴𝑖 𝑗 𝑒−𝜌

𝐴𝑖 𝑗!

∏
𝑖

(𝜌/2)𝐴𝑖𝑖/2𝑒−𝜌/2

(𝐴𝑖𝑖/2)!

=
𝜌𝑚𝑒−𝜌𝑛2/2∏

𝑖< 𝑗 𝐴𝑖 𝑗!
∏

𝑖 𝐴𝑖𝑖!!
, (1.11)

where the double factorial (2𝑥)!! = 2𝑥𝑥!.
In the common sparse setting, where the density 𝜌 → 0, the multigraph model reduces

to the simple graph model since it becomes exponentially unlikely to observe more than
a single edge between any pair of nodes. Specifically, by setting 𝜌 = 𝑛

𝑛−1𝑝 (adjusted for
self-edges), the multigraph likelihood Eq. (1.11) approximates the simple graph likelihood
Eq. (1.2) as

𝑃(A|𝜌) = 𝑃(A|𝑝) + 𝑂(𝑝2) (1.12)

to leading order in this limit. This approximation allows us to use the more computa-
tionally manageable multigraph model in sparse settings, even for networks known to
be simple. Consequently, the Erdős-Rényi multigraph shares the giant component and
connectivity properties previously discussed in the sparse, constant degree limit3.

To complete the description of the multigraph model, we must adopt a prior for the
density 𝜌. Unlike the probability 𝑝 ∈ [0, 1], the density 𝜌 can assume any non-negative
value. As it is unbounded, a traditional maximum entropy prior is undefined over the
infinite range. Instead, we maximize the entropy under the constraint that the expected

3Solomonoff and Rapoport [122] initially demonstrated these properties in the multigraph version of the
model, while Erdős and Rényi [50] considered the microcanonical 𝐺(𝑛, 𝑚).
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value is 1, resulting in an exponential prior4

𝑃(𝜌) = 𝑒−𝜌. (1.13)

From this choice, the posterior distribution of 𝜌 is

𝑃(𝜌|A) = 𝑃(A|𝜌)𝑃(𝜌)
𝑃(A) (1.14)

=
𝜌𝑚𝑒−𝜌(𝑛2/2+1)(𝑛2/2 + 1)𝑚+1

𝑚! . (1.15)

The peak of this distribution defines the MAP estimate of 𝜌

𝜌̂MAP =
2𝑚
𝑛2 + 2

. (1.16)

Note that this value is slightly less than the empirical density Eq. (1.3), reflecting the
influence of the prior towards smaller values.

The Bayesian evidence of the model is found by integrating over the density,

𝑃(A) =
∫

𝑃(A|𝜌)𝑃(𝜌)𝑑𝜌

=
1

(𝑛2/2)𝑚
𝑚!∏

𝑖< 𝑗 𝐴𝑖 𝑗!
∏

𝑖 𝐴𝑖!!︸                           ︷︷                           ︸
multinomial

(𝑛2/2)𝑚
(𝑛2/2 + 1)𝑚+1︸           ︷︷           ︸

geometric

(1.17)

= 𝑃(A|𝑚)𝑃(𝑚),

here organized to illustrate its microcanonical interpretation. The number of edges 𝑚
is first distributed geometrically, then those edges are multinomially distributed among
possible node pairs.

The description length of the Facebook friends network in the multigraph model is
then 𝐻(A) = − log𝑃(A) = 13333.1, slightly more than the description length 𝐻(A) =

13249.6 in the simple graph model. Although the simple Erdős-Rényi model compresses
the friends network more efficiently due to its restriction to simple networks, we typically
prefer the multigraph model in these sparse cases for its ease and flexibility.

We can further use this model to predict which nodes would likely connect to each other
in future observations of the network. In the Erdős-Rényi model, only the parameter 𝜌

4This is analogous to how the Boltzmann distribution in Eq. (A.33) maximizes entropy under the average
energy constraint.
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is used to make predictions. Given an inference of this density from a network, we can
predict that a further observation will share the same density. In many contexts, however,
we might anticipate that the predicted data will exhibit a different density than our initial
observation.

This is especially relevant in a cross-validation context, one where the observed data is
randomly divided into a training set Atrain and testing set Atest such that Atrain +Atest =

A. In these tests, the model is often trained on 80% of the data and tested on the
remaining 20%. If we infer that the training data has density 𝜌train, we can then assume
that the testing data only has a quarter the density, setting 𝜌test = 𝑓 𝜌train with 𝑓 = 0.25.

Under this assumption, we can then define a posterior-predictive distribution that
accounts for all possible values of the density we could infer, factoring in the ratio 𝑓

between the training and testing data,

𝑃(Atest|Atrain, 𝑓 ) =
∫

𝑃(Atest|𝜌test)𝑃(𝜌train|Atrain)𝑑𝜌train

=
∫

𝑃(Atest| 𝑓 𝜌)𝑃(𝜌|Atrain)𝑑𝜌

=
(𝑚train + 𝑚test)!

𝑚train!
∏

𝑖< 𝑗 𝐴𝑖 𝑗!
∏

𝑖 𝐴𝑖𝑖!!
𝑓 𝑚

test(𝑛2/2 + 1)𝑚train+1

((1 + 𝑓 )𝑛2/2 + 1)𝑚train+𝑚test+1
. (1.18)

As in this example, the posterior-predictive can be quite complicated. For the other mod-
els we discuss, the predictive is detailed in Appendix B.8. By averaging results over
many cross-validation splits, we then obtain an alternative perspective on the model’s
performance, specifically how well it can reconstruct the full data set from partial obser-
vations. In our network of friendships, we can compute that on average the minus log
posterior-predictive is

𝐻(Atest|Atrain, 𝑓 ) = − log𝑃(Atest|Atrain, 𝑓 ) ≈ 3670.2, (1.19)

indicating how effectively the model can extrapolate the network.
As shown in Appendix A.4, suitably interpreted this measure of predictive power is

very similar to the model evidence criterion, although subtle differences exist between the
two. When assessing models on real network data we will report both these statistics in
this thesis.
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1.2.2 Configuration model

While the Erdős-Rényi random graph provides key insights into network connectivity,
its structureless nature limits its ability to express further features of real networks. To
address this, we employ models that reflect commonly observed network structures. In
this section we describe the configuration model, which accounts for the wide variation in
node degrees often seen in real examples.

In many networks the distribution of connections is uneven; some nodes have many
interactions, while most only have a few. Figure 1.7a revisits the social network from
Figure 1.5, now with node sizes representing node degree. These degrees illustrate that
the network features a central core of highly connected nodes alongside peripheral nodes
with fewer connections, resulting in the broad degree distribution plotted in Figure 1.7c.
In this section, we describe the usual configuration model of this variation and introduce
a more general configuration model that allows us to quantify this inequality.

To demonstrate how significant this observed variation is, we can compare the social
network to random graphs with the same number of nodes and edges. Figure 1.7b contains
such a random network, which apparently has a more homogeneous degree distribution
than the observations. As depicted in Figure 1.7c, no node in the random graph has more
than 24 connections, whereas a node in the real network reaches a maximum degree 𝑘max =

58. This is not an isolated example. In Figure 1.7d we plot the maximum degrees 𝑘max

observed across 1,000 random graphs sampled from the microcanonical 𝐺(𝑚, 𝑛). In no
case does a node have degree over 32. This discrepancy indicates that while it is technically
possible for the flat random graph to generate a network as skewed as our observation,
the p-value is exceedingly low. We therefore reject the Erdős-Rényi model for this data.

To bridge this gap we must add something to the Erdős-Rényi model. If everyone has
the same opportunity 𝜌 to connect with everyone else, it is unlikely that the variation
in degrees we observe could appear. To create a model which can generate such an
imbalance, we instead assume that the nodes are not equivalent. We assign to each node 𝑖
a propensity (or "node weight") 𝜃𝑖 ≥ 0 to connect to other nodes, organized as entries of
an 𝑛-vector θ. Nodes 𝑖 and 𝑗 are then connected by 𝜃𝑖𝜃𝑗𝜌 edges on average, the product of
their individual weights and the overall density 𝜌. Figure 1.8a shows a schematic of this
canonical generative process in action.

Since the node weights always appear multiplied by the global density, their overall
normalization is arbitrary since it can be compensated by a fluctuation of the density
parameter 𝜌. We therefore choose to normalize the node weights to have average value 1
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Figure 1.7: (a) Social network of Facebook profile connections, nodes sized according to
their degree [17]. (b) A sampled Erdős-Rényi random graph with the same number of
nodes and edges as the social network. (c) Histogram of degree distributions of the social
network (blue) and random graph (orange). (d) Distribution of the maximum degree
𝑘max in the random graph null model, as observed over 1,000 samples. The maximum
degree of 58 achieved by the social network is highlighted in blue and is well-separated
from that obtained by a typical random graph.
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as

1
𝑛

𝑛∑
𝑖=1

𝜃𝑖 = 1. (1.20)

This choice constrains the parameters to the scaled simplex 𝑛Δ𝑛−1 ⊂ R𝑛 .
Extending the Erdős-Rényi random multigraph Eq. (1.11), we can then write the overall

likelihood as a product of Poisson distributions

𝑃(A|θ, 𝜌) =
∏
𝑖< 𝑗

(𝜃𝑖𝜃𝑗𝜌)𝐴𝑖 𝑗 𝑒−𝜃𝑖𝜃𝑗𝜌
𝐴𝑖 𝑗!

𝑛∏
𝑖=1

(𝜃2
𝑖 𝜌/2)𝐴𝑖𝑖/2𝑒−𝜃

2
𝑖 𝜌/2

(𝐴𝑖𝑖/2)! (1.21)

=
𝜌𝑚𝑒−𝑛2𝜌/2∏

𝑖< 𝑗 𝐴𝑖 𝑗!
∏

𝑖 𝐴𝑖𝑖!!

𝑛∏
𝑖=1

𝜃𝑘𝑖𝑖 . (1.22)

This likelihood defines the canonical configuration model, also known as the Chung-Lu
model5 [30]. In this model the node weight 𝜃𝑖 controls the expected degree of node 𝑖 as

E𝑘𝑖 =
𝑛∑
𝑗=1

E𝐴𝑖 𝑗 =
𝑛∑
𝑗=1

𝜃𝑖𝜃𝑗𝜌 = 𝜃𝑖𝑛𝜌. (1.23)

As we vary these node weights we thus expect to generate a network with a realistic range
of degrees.

To perform Bayesian inference with this model we must specify priors over the pa-
rameters. For the global weight 𝜌 we use the same exponential prior Eq. (1.13) as the
Erdős-Rényi multigraph. For the node weights θ we adopt a uniform, maximum entropy
prior over the simplex of values satisfying the normalization Eq. (1.20),

𝑃(θ) = (𝑛 − 1)!
𝑛𝑛−1 . (1.24)

Integrating over this simplex yields an integrated likelihood

𝑃(A|𝜌) =
∫

𝑃(A|θ, 𝜌)𝑃(θ)𝑑θ

=
∏

𝑖 𝑘𝑖!
(2𝑚)!∏𝑖< 𝑗 𝐴𝑖 𝑗!

∏
𝑖 𝐴𝑖𝑖!!

(
2𝑚 + 𝑛 − 1
𝑛 − 1

)−1
𝜌𝑚𝑒−𝑛

2𝜌/2

5Some presentations of the configuration model use probabilities proportional to the observed degrees
rather than the latent node weights. This substitution can be understood as an "empirical Bayes" treatment
of this Chung-Lu model.
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Figure 1.8: Schematic of perspectives on the generative process in the configuration
model. (a) Canonically, the overall density 𝜌 is first sampled from the prior 𝑃(𝜌),
followed by the node weights θ indicated by the node sizes, and then the network A itself
is generated with edges appearing proportionally to the weights they connect. Example
parameters 𝜌, 𝜃1, 𝜃2 relevant to generating 𝐴12 are given. (b) Microcanonically, the
number of edges 𝑚 is first set, followed by a degree sequence k that sums to 2𝑚. Finally
the network is generated by a stub matching process that wires together the edges.
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which we can then further integrate over 𝜌 to obtain the evidence

𝑃(A) =
∫

𝑃(A|𝜌)𝑃(𝜌)𝑑𝜌

=
(2𝑚)!!∏𝑖 𝑘𝑖!

(2𝑚)!∏𝑖< 𝑗 𝐴𝑖 𝑗!
∏

𝑖 𝐴𝑖𝑖!!︸                        ︷︷                        ︸
stub-matching

(
2𝑚 + 𝑛 − 1
𝑛 − 1

)−1

︸             ︷︷             ︸
uniform

(𝑛2/2)𝑚
(𝑛2/2 + 1)𝑚+1︸           ︷︷           ︸

geometric

(1.25)

= 𝑃(A|k)𝑃(k|𝑚)𝑃(𝑚)

where we have highlighted the microcanonical structure of the model. In this decomposi-
tion the number of edges 𝑚 is distributed geometrically, as in the Erdős-Rényi multigraph
Eq. (1.17). The degree sequence k is then uniformly distributed among all possible vectors
of 𝑛 non-negative integers that sum to 2𝑚. Finally given these degrees, the network itself
is distributed according to a so-called stub-matching likelihood 𝑃(A|k).

This network likelihood corresponds to an underlying stub-matching process. In it, we
first assign 𝑘𝑖 “stubs" (or “half-edges") to each node 𝑖. To form each edge of the network
we randomly select two stubs which we “wire together" by replacing them with an edge
that connects the two nodes. By performing this matching 𝑚 times we form all edges of
the network A. This stub matching generically generates multigraphs as self edges can
appear and two nodes can be connected multiple times.

To recover the likelihood of generating a particular multigraph A in this manner, we
first note that if all stubs are distinguishable there are

Ω(M ) = (2𝑚)!
(2𝑚)!! (1.26)

possible matchings (or "perfect matchings") of the 2𝑚 stubs. As the stubs are ultimately
indistinguishable, a multiplicity

Ξ(A) =
∏

𝑖 𝑘𝑖!∏
𝑖< 𝑗 𝐴𝑖 𝑗!

∏
𝑖 𝐴𝑖𝑖!!

(1.27)

of these matchings correspond to the same graph. As we uniformly select one of theΩ(M )
possible stub matchings, the probability of generating a particular network A with de-
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grees k is thus

𝑃(A|k) = Ξ(A)
Ω(M )

=
(2𝑚)!!∏𝑖 𝑘𝑖!

(2𝑚)!∏𝑖< 𝑗 𝐴𝑖 𝑗!
∏

𝑖 𝐴𝑖𝑖!!
. (1.28)

This stub-matching likelihood alone is often also referred to as the "configuration model"
since it is a model over possible networks that share exactly the same degree sequencek. In
Section 1.2.3 this microcanonical model will prove useful as a null model for demonstrating
group structure.

Concluding with this stub-matching, the full microcanonical perspective on network
formation in the configuration model is given in Figure 1.8b alongside the canonical pic-
ture. Both formulations lead to the same overall likelihood of generating a given network
and therefore may be adopted interchangeably. An advantage of the microcanonical form
in this case is an explicit expression 𝑃(k|𝑚) for the broad distribution of degree sequences
realized by the configuration model.

Although it is a common feature, not all networks have such variation in their degree
distribution. In Figure 1.9a we plot the degree distributions of both the earlier Facebook
friends network and the college football matches described in Section 1.1.2. Although there
is some variation in the degrees of the football network, they are much more consistent
than in the Facebook network, as each team plays roughly the same number of matches
over the course of the season. This raises a natural model selection problem; is the level of
variation of degrees we observe in the football network sufficient to justify a generalization
like the configuration model? Or should we prefer the simpler Erdős-Rényi model?

To help answer this question we could repeat the null model significance tests for
the football network, and check whether the Erdős-Rényi model can be rejected. Alter-
natively, we can compare the Bayesian evidence of the two models, Eq. (1.17) for the
Erdős-Rényi model and Eq. (1.25) for the configuration model. Table 1.1 contains these
results, expressed as description lengths 𝐻(A) for the two models on the two data sets.
From these values we can observe that the configuration model more efficiently encodes
the social network while the Erdős-Rényi model better encodes the football network. By
using these description lengths we thus establish affirmative evidence of one model over
another, not just reject or fail to reject the null Erdős-Rényi model.

An alternative approach to comparing these evidences is to instead define a nested
model that includes both the Erdős-Rényi and configuration models as special cases. To
accomplish this we note that if all node weights are the same, 𝜃𝑖 = 1, the likelihood
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Figure 1.9: (a) Degree distributions of the Facebook friend and football match networks.
(b) Posterior distributions of the degree homogeneity parameter 𝛼 in the general
configuration model on these networks. Values of 𝛼 are plotted along the bottom x-axis
and corresponding values of the Gini coefficient of degree inequality 𝐺 are given on the
top x-axis. The overall scale is linear in the Gini coefficient, leading to a Jacobian factor in
the posterior such that the plot reflects the appropriate density. The configuration model
is highlighted by the vertical line at 𝛼 = 1, 𝐺 = 0.5, along with the Erdős-Rényi model
at 𝛼 → ∞, 𝐺 = 0.

Data set Facebook friends College football
Model E-R config. general E-R config. general
𝛼̂MAP N/A N/A 1.926 N/A N/A 271.3
𝐺̂MAP N/A N/A 0.381 N/A N/A 0.034
𝐻(A) 13333.1 12334.8 12299.7 3004.8 3212.88 3014.6
𝐻(Atest|Atrain) 3670.2 3420.1 3415.6 859.0 890.1 859.6

Table 1.1: Table of performance metrics of the Erdős-Rényi, configuration, and general
configuration models on the Facebook friend and College football network examples.
The Bayesian evidence 𝐻(A), minus log posterior-predictive 𝐻(Atest|Atrain), and best-fit
parameter 𝛼̂MAP in the general model and corresponding Gini coefficient 𝐺̂MAP are
given. The log posterior-predictive represents the median result out of 50
cross-validation splits, as described in Appendix B.8.
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Eq. (1.21) is equal to the Erdős-Rényi model likelihood Eq. (1.11). This case can be
represented by a Dirac-delta prior on the weights

𝑃(θ) =
𝑛∏
𝑖=1

𝛿(𝜃𝑖 − 1). (1.29)

To interpolate between this and the uniform prior Eq. (1.24) that defines the configuration
model, we use a Dirichlet prior6 with concentration parameter 𝛼 > 0 over the simplex

𝑃(θ|𝛼) = Γ(𝑛𝛼)
Γ(𝛼)𝑛𝑛𝑛−1

𝑛∏
𝑖=1

𝜃𝛼−1
𝑖 . (1.30)

When 𝛼 = 1, the Dirichlet distribution is the uniform Eq. (1.24), while in the limit 𝛼 → ∞
the distribution converges to the Dirac-delta Eq. (1.29). Therefore the same model likeli-
hood with this now variable prior includes both the usual Erdős-Rényi and configuration
models as special cases. We will call this broader model with the extra parameter 𝛼 the
general configuration model.

Integrating over both the node weights θ and density 𝜌 in the general model, we obtain
its microcanonical form

𝑃(A|𝛼) = (2𝑚)!!∏𝑖 𝑘𝑖!
(2𝑚)!∏𝑖< 𝑗 𝐴𝑖 𝑗!

∏
𝑖 𝐴𝑖𝑖!!︸                        ︷︷                        ︸

stub-matching

(
2𝑚 + 𝑛𝛼 − 1
𝑛𝛼 − 1

)−1 𝑛∏
𝑖=1

(
𝑘𝑖 + 𝛼 − 1
𝛼 − 1

)
︸                                     ︷︷                                     ︸

Dirichlet-multinomial

(𝑛2/2)𝑚
(𝑛2/2 + 1)𝑚+1︸           ︷︷           ︸

geometric

= 𝑃(A|k)𝑃(k|𝑚, 𝛼)𝑃(𝑚). (1.31)

Here the degree sequence follows a Dirichlet-multinomial distribution 𝑃(k|𝑚, 𝛼), and the
binomial coefficient is generalized to possibly non-integer arguments as

(
𝑎
𝑏

)
=

Γ(𝑎 + 1)
Γ(𝑏 + 1)Γ(𝑎 − 𝑏 + 1) . (1.32)

This is the discrete analog of the Dirichlet distribution, defined over possible non-negative
integer sequences k that sum to 2𝑚. Like the Dirichlet distribution, when 𝛼 = 1 the
Dirichlet-multinomial distribution is uniform over all possible degree sequences. As 𝛼

increases, the degree distribution k is increasingly concentrated. In the limit 𝛼 → ∞ the
distribution of the degrees is multinomial, recovering the Erdős-Rényi model. Between

6Dirichlet distributions are typically defined over the unit simplex. We include the scale factor 𝑛𝑛−1 in
this presentation to account for the normalization Eq. (1.20).
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these values, 1 < 𝛼 < ∞, the degree distribution interpolates between the homogeneous
Erdős-Rényi distribution to the dispersed configuration model. And for 0 < 𝛼 < 1, the
degrees vary even more than in the configuration model.

As larger values of 𝛼 produce more uniform degree distributions, we refer to this 𝛼 as
the degree homogeneity parameter. By fitting this parameter to a network we can thus infer
its degree homogeneity. To do this in the Bayesian framework, we introduce a half-Cauchy
prior

𝑃(𝛼) = 2
𝜋(𝛼2 + 1) (1.33)

which has the special case 𝛼 = 1 as its median value. Including this prior, our model has
become too complicated to analytically perform the integral over the parameter 𝛼 > 0,
although we can numerically integrate to obtain the evidence of the general model as

𝑃(A) =
∫

𝑃(A|𝛼)𝑃(𝛼)𝑑𝛼. (1.34)

As the models we consider become increasingly complex, we will need to resort to such
tricks to compute the model evidence.

To help interpret the degree homogeneity 𝛼, we can instead re-frame it as a measure
of degree inequality. Inequality of a resource distribution, for example of an income dis-
tribution, is often quantified using the Gini coefficient [82, 56]. This measure ranges from
0 when all values are same, to 1 when only one value is non-zero. In our case, we can
consider the node weights θ to be a resource and so quantify the inequality of their distri-
bution amongst the nodes7. The Erdős-Rényi case where all weights are the same, 𝜃𝑖 = 1,
corresponds to a Gini of 0. For the more general Dirichlet distribution Eq. (1.30), we can
compute that the Gini index of the 𝜃𝑖 is

𝐺 =
Γ(𝛼 + 1/2)

Γ(𝛼 + 1)Γ(1/2) =
(
𝛼 − 1/2

𝛼

)
. (1.35)

For the usual configuration model, 𝛼 = 1, this Gini is 𝐺 = 0.5. In the extreme limit 𝛼 →
0, the Gini is maximized at 𝐺 = 1 as only one node has non-zero degree. Table 1.2
summarizes these special cases of the degree homogeneity and inequality parameters. In
Figure 1.9b we also plot the homogeneity parameter 𝛼 along the bottom x-axis and the
Gini 𝐺 along the top x-axis to highlight the inverse relation between the two.

7Here we define the Gini coefficient in terms of the distribution of the latent node weights θ. Most uses
of the Gini instead consider the distribution of an observed resource like the actual realized degrees k.

27



Model 𝛼 𝐺
Erdős-Rényi random graph ∞ 0
Configuration model 1 1/2
General configuration model inferred inferred

Table 1.2: Summary of the parameter values of the general configuration model that
correspond to the other models it generalizes. The degree homogeneity 𝛼 and
corresponding degree inequality 𝐺 are inferred in the general configuration model.

Since the nested model includes these special cases of interest, the posterior distribution
can be used to directly compare their model evidence as

𝑃ER(A)
𝑃config(A) =

𝑃(A|𝛼 → ∞)
𝑃(A|𝛼 = 1) =

𝑃(𝛼 → ∞|A)
𝑃(𝛼 = 1|A)

𝑃(𝛼 = 1)
𝑃(𝛼 → ∞) . (1.36)

In Figure 1.9, the posterior distributions are plotted including the prior factor 𝑃(𝛼=1)
𝑃(𝛼→∞) , so

that we can visually inspect whether one model is preferred over another in this manner8.
We can observe that the posterior for the football match network is peaked as 𝛼 → ∞,
indicating that the Erdős-Rényi random model is not excluded. For the social network,
the posterior is peaked at 𝛼 ≈ 1.93, between the configuration and Erdős-Rényi models.
Although the relative proximity to the configuration model indicates that it is preferred
over the Erdős-Rényi model, both special cases are excluded in favor of the more general
model.

In Table 1.1, the full model evidence and predictive power of the general model confirm
these findings. The Facebook network is best described by the general configuration
model while the football network is best captured by the Erdős-Rényi model. The general
configuration model over-fits the football data and the extra flexibility only diminishes the
predictive power of the Erdős-Rényi model. For many of the models that we consider later
in this thesis, the absolute evidence is difficult to compute. By constructing such nested
models, we can straightforwardly observe relative evidence of the models it generalizes
by whether the posterior distribution of interpolating parameters excludes those special
cases.

At this stage it is worth reflecting that the three models we have considered in this
section – the Erdős-Rényi, configuration, and general configuration models – all share
the likelihood Eq. (1.21) and are only differentiated by the form of the prior on the node
weights. Despite the commonality, the models exhibit drastically different results. This

8In this thesis when using a non-uniform prior like 𝑃(𝛼), we will rescale the axis such that the appropriate
density reflects the prior factor, allowing us to interpret the results in this manner.
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behavior is unlike many statistical settings where as we collect more data the influence
of the prior wanes, such as in Appendix A.1. This intuition, however, breaks down for
network models where we associate to each node 𝑖 a new parameter like 𝜃𝑖 . In these
situations, as the size of the network increases, 𝑛 → ∞, the number of parameters θ grows
as well. The ratio between the overall quantity of data, roughly the number of edges 𝑚,
and the number of parameters 𝑛 stays fixed in the usual constant degree limit. The
prior on these node-level parameters therefore significantly influences model outcomes.
In contrast, priors like 𝑃(𝜌) on single global parameters still have little bearing in large
networks, since the influence of the single prior does not scale with the network size.

Much of this thesis follows a similar theme to this observation. In realistic settings,
terms which may appear to be "subleading" in a traditional sense, like choice of prior, can
in fact matter considerably for real applications. By carefully including these details in
our analysis we can obtain not only more faithful results but often also learn about the
underlying nature of the data sets.

1.2.3 Stochastic block model

In the previous section, we extended the Erdős-Rényi random graph to the general con-
figuration model to detect and quantify statistically significant variations in node degrees.
In this section, we introduce the stochastic block model (SBM), which similarly models
group structures such as those discussed in Section 1.1.2.

Groups in networks are often characterized as communities of tightly connected nodes.
In the examples shown in Figure 1.3a-c, the groups are assortative as indicated by the high
number of edges𝑚in between nodes of the same group. To count these intra-group edges,
we index the groups by 𝑟 = 1, ..., 𝑞 and represent group assignments as an 𝑛-vector of
integers b, where each node 𝑖 belongs to group 𝑏𝑖 ∈ {1, ..., 𝑞}. In this notation, the number
of edges inside groups is

𝑚in =
1
2

𝑛∑
𝑖 , 𝑗=1

𝐴𝑖 𝑗𝛿𝑏𝑖𝑏 𝑗 , (1.37)

where the Kronecker delta 𝛿𝑏𝑖𝑏 𝑗 restricts the sum to nodes 𝑖 and 𝑗 in the same group. While
a large number of edges 𝑚in within the groups suggests a strong group structure, it is
important to contextualize this count. Even if there is no assortative preference, randomly
placed edges can fall within groups and contribute to 𝑚in.

To establish a baseline for𝑚in, we use the microcanonical configuration model Eq. (1.28)
as a null hypothesis. This generates alternative networks that match the observed node de-
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grees but lack inherent group structure. Under this randomization, the expected number
of edges between any two nodes 𝑖 and 𝑗 is

E𝐴𝑖 𝑗 =
𝑘𝑖𝑘 𝑗
2𝑚 . (1.38)

We thus expect a total number of intra-group edges

⟨𝑚in⟩config =
1
2

∑
𝑖 𝑗

𝑘𝑖𝑘 𝑗
2𝑚 𝛿𝑏𝑖𝑏 𝑗 . (1.39)

To demonstrate that the groups are meaningfully assortative, we then check if the count𝑚in

observed in the network is surprising relative to this expectation.
A measure known as the modularity [98] quantifies and normalizes this difference as

𝑄(𝐴, b) = 1
𝑚

(
𝑚in − ⟨𝑚in⟩config

)
=

1
2𝑚

∑
𝑖 𝑗

(
𝐴𝑖 𝑗 −

𝑘𝑖𝑘 𝑗
2𝑚

)
𝛿𝑏𝑖𝑏 𝑗 . (1.40)

This definition ensures that the expected modularity of a partition is 0, and a positive
value indicates that the network is more assortative, or modular, than we would expect.

Within the significance testing framework, we can also compute the p-value that the
configuration model could generate a network as assortative as the observed case. Fig-
ure 1.10 shows an example of this test on the network of Division IA college football
matches considered in the previous section. Here we can calculate the modularity of
the network across the 𝑞 = 12 conferences, represented by node colors in Figure 1.10a.
Across the season, 𝑚in = 397 of the 𝑚 = 616 matches are played between teams in the
same conference (highlighted in green), leading to a network modularity of 𝑄 = 0.555.
Figure 1.10b compares the modularity along this partition in the real network to that
in 10,000 alternative networks drawn from the configuration model. Across these cases
the largest modularity obtained is 𝑄 = 0.041, indicating that there is a very statistically
significant preference for teams to play within their own conference.

In an unsupervised setting, where the group structure of the network is unknown, the
modularity is often used not only to measure behavior but also to identify groups. In
this approach, a "good" group structure is defined as one with high modularity, where
groups contain significantly more internal edges than expected by chance. Thus, for a
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Figure 1.10: (a) Football match network with edges within groups highlighted in green
and edges between groups in red. (b) Modularity of the conference partition of the
football match network (vertical dashed line) compared to 10,000 alternative networks
with the same degree sequence sampled from the configuration model.

given network A, the best-fit group structure is the optimum

b∗ = argmax
b

𝑄(A, b), (1.41)

where b∗ is found using one of several modularity maximization methods. Some commonly
used algorithms are discussed in Appendix C.16.2.

Applying this strategy to the football match network, we can find a partition of the teams
into 11 groups with modularity 𝑄 = 0.601. Remarkably, this partition closely resembles
the "true" conference group structure. Using the information-theoretic similarity measure
defined in Chapter 3, the found partition scores a 0.865 out of 1. From the network
alone, we can thus nearly recover the original conferences. Encouraged by this result, we
can apply this method to help uncover groups of nodes that meaningfully influence the
structure of the network, even when such groups are initially unknown.

While this modularity maximization approach has been widely used to great effect
in network science [13, 19, 58], it has certain limitations. One major issue is overfitting.
Consider a graph that inherently lacks a group structure, such as those generated by Erdős-
Rényi or configuration models. In such cases the appropriate "partition" of the nodes
places them into one large group, b = (1, ..., 1). From the definition of the modularity,
this all-in-one grouping has 𝑄 = 0 for any network A. However, when optimizing the
modularity, it is typically possible to find some other partition of the nodes into more
than one group that is at least slightly assortative, 𝑄 > 0, merely due to random graph
fluctuations. Modularity maximization will therefore prefer this over-fitted partition over
the true single group.
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Figure 1.11: (a) Network of football matches within only the Big Ten conference. The
teams are partitioned into two groups to maximize modularity. (b) The modularity along
the optimized partition compared that in 10,000 networks with the same degree
sequence sampled from the configuration model.

Figure 1.11 exemplifies this issue by illustrating the network of matches played within
only the Big Ten college football conference in 2022. This network presumably lacks group
structure, given that it represents a single conference. Yet, the modularity is maximized
at positive 𝑄 = 0.156 by dividing the teams into two groups, as shown in Figure 1.11a.
In Figure 1.11b we again consider this modularity in the context of 10,000 alternative
networks that share the same degree sequence. In this case, the observed modularity
is not clearly separated from what the configuration model predicts, but still yields a p-
value 𝑃 = 0.01. In isolation, this might imply a statistically significant assortative pattern.
However, given that this grouping was selected among 2𝑛−1 − 1 = 8191 possible two-
group partitions, is it not unexpected that one might exhibit such a low p-value. Since
the modularity alone can never return a null result, modularity maximization must be
combined with such significance testing that is often challenging to interpret.

Even when no true assortative pattern is present, modularity maximization will overfit
and report some slightly assortative partition. In cases where the actual group structure is
disassortative, such as the bipartite network of Figure 1.3d, modularity maximization will
also fail to identify the true groups. This is because disassortative groups do not align
with modularity’s fundamentally assortative definition of a community. To successfully
identify such groups, we must broaden our definition to include these cases, or even more
complex structural patterns like mixtures of assortative and disassortative groups.

The root of these issues lies in the fact that modularity maximization is not a generative
model, unlike the Erdős-Rényi or configuration models described earlier. While the parti-
tion that maximizes the modularity is useful for describing and summarizing assortative
network structures, it does not provide a mechanism for their formation. This precludes
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us from employing our usual Bayesian inference tools to prevent overfitting or from using
the modularity to make predictions.

While some efforts have been made to directly convert the modularity objective function
into a generative model [110], in this thesis we instead consider stochastic block models
(SBMs). These models come in a variety of different flavors [69, 106, 141], some of which
we introduce in Chapter 2. They provide the flexibility to model a wide range of possible
group structures and can be directly compared against the other generative models we
have considered.

The traditional stochastic block model is defined by the assumption that the probability
two nodes 𝑖 and 𝑗 are connected depends only on their group identities 𝑏𝑖 and 𝑏 𝑗 . Some
pairs of groups may be more likely to be connected than others, but all nodes within
the same group share the same structural role: they are identically and independently
likely to be connected to nodes in other groups. These probabilities across groups form
a symmetric 𝑞 × 𝑞 weight matrix ω, where 𝜔𝑟𝑠 is the expected number of edges between
each node in group 𝑟 and each node in group 𝑠. This framework effectively defines what
we mean by groups: node labels that influence the pattern of connections. This pattern
can be quite generic as we do not assume the groups are defined by a globally assortative
or disassortative preference.

For each pair of groups 𝑟 and 𝑠, the weight matrix entry 𝜔𝑟𝑠 plays the same role as the
overall density 𝜌 in the Erdős-Rényi multigraph model Eq. (1.11). Each edge count 𝐴𝑖 𝑗 is
modeled as a Poisson distribution with expectation 𝜔𝑏𝑖𝑏 𝑗 . Consequently, the usual SBM
models the interior of each group 𝑟 as a random multigraph with density 𝜔𝑟𝑟 and assumes
connections between groups occur independently and identically.

By building the model in this way, the SBM becomes a nested model that includes an
Erdős-Rényi random graph as the special case where all nodes are assigned to a single
group, b = (1, ..., 1). Just as the general configuration model, this nested structure allows
us to directly compare the SBM against the Erdős-Rényi model it extends. Collecting
these assumptions, the likelihood that a network is generated by a group structure b and
weights ω in the SBM is then

𝑃(A|ω, b) =
∏
𝑖< 𝑗

𝜔
𝐴𝑖 𝑗
𝑏𝑖𝑏 𝑗
𝑒−𝜔𝑏𝑖 𝑏𝑗

𝐴𝑖 𝑗!

𝑛∏
𝑖=1

(𝜔𝑏𝑖𝑏𝑖/2)𝐴𝑖𝑖/2𝑒−𝜔𝑏𝑖 𝑏𝑖 /2

(𝐴𝑖𝑖/2)! . (1.42)

We can condense this expression by introducing some useful notation. We denote the
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number of nodes in group 𝑟 as

𝑛𝑟 =
𝑛∑
𝑖=1

𝛿𝑏𝑖𝑟 , (1.43)

forming the 𝑞-vector of integers n, and count the number of edges that run between
groups 𝑟, 𝑠 = 1, ..., 𝑞 as

𝑀𝑟𝑠 =
𝑛∑

𝑖 , 𝑗=1
𝐴𝑖 𝑗𝛿𝑏𝑖𝑟𝛿𝑏 𝑗 𝑠 , (1.44)

entries of the symmetric 𝑞 × 𝑞 edge count matrix M . Analogous to the adjacency matrix,
the diagonal elements of this edge count matrix 𝑀𝑟𝑟 are twice the number of edges that
run internally between nodes in group 𝑟. This convention ensures that the row sum of the
edge count matrix m has entries

𝑚𝑟 =
𝑞∑
𝑠=1

𝑀𝑟𝑠 =
𝑛∑
𝑖=1

𝑘𝑖𝛿𝑏𝑖𝑟 (1.45)

equal to the total degree of the nodes in each group. With this notation we can then collect
the likelihood terms as

𝑃(A|ω, b) = 1∏
𝑖< 𝑗 𝐴𝑖 𝑗!

∏
𝑖 𝐴𝑖𝑖!!

∏
𝑟<𝑠

𝜔𝑀𝑟𝑠
𝑟𝑠 𝑒−𝑛𝑟𝑛𝑠𝜔𝑟𝑠

𝑞∏
𝑟=1

𝜔𝑀𝑟𝑟/2
𝑟𝑟 𝑒−𝑛

2
𝑟𝜔𝑟𝑟/2. (1.46)

At this stage, we may be tempted to perform a maximum-likelihood estimate and find
the choice of weightsω and partitionbmost likely to produce the observed network. Unfor-
tunately this approach has serious issues. Consider the group partition b = (1, ..., 𝑛) that
places each node in its own group and the weight matrixω = A between the now 𝑛 groups.
Although this choice of parameters then has a very high model likelihood Eq. (1.42), as
each edge𝐴𝑖 𝑗 is drawn from a Poisson distribution of the same mean𝐴𝑖 𝑗 , the overall model
is woefully over-parametrized. The weight matrix alone contains as many parameters as
the data A itself and overfits the network.

Our familiar solution to this problem is to carefully introduce priors over the parame-
ters ω and b that reflect what we expect "typical" weight and group structures to look like.
As in the general configuration model, the choices of these priors matter considerably
in realistic network applications. For example in Section 2.2 we discuss how the choice
of weight matrix prior 𝑃(ω) drastically influences model behavior. In this introduction,
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however, we will review the choices most often made for the traditional SBM.
Over possible group structures b we use a prior

𝑃(b) = 𝑃(b|n)𝑃(n|𝑞)𝑃(𝑞)

=
∏

𝑟 𝑛𝑟 !
𝑛!

(
𝑛 − 1
𝑞 − 1

)−1 1
𝑛

(1.47)

which is uniform over the number of groups 𝑞 ranging from 1 to 𝑛, over the possible node
count vectors n as positive integer vectors of length 𝑞 that sum to 𝑛, and over the possible
partitions b that satisfy the node counts n. This structure of the prior ensures that a priori
we have no preference for any particular number of communities 𝑞. For instance there is
prior probability 𝑃(𝑞 = 1) = 1/𝑛 that all nodes belong in one group. This case recovers the
Erdős-Rényi random graph, the possibility of no community structure. If we had instead
used a prior that is simply uniform over all possible 𝑛-vectors of integers from 1 to 𝑛, the
prior would heavily weigh a large number of communities, as most such labelings have a
number of distinct groups 𝑞 ∼ 𝑛, and 𝑞 = 1 would be effectively excluded from the prior
distribution.

For the weight matrix ω, we traditionally use i.i.d. exponential priors of mean 𝜌 > 0
on the upper triangular entries 𝜔𝑟𝑠 where 𝑟 ≤ 𝑠. To generate a symmetric matrix, we then
set the entries below the diagonal to those above it as 𝜔𝑠𝑟 = 𝜔𝑟𝑠 . This gives the prior over
symmetric weight matrices

𝑃(ω|𝜌) =
∏
𝑟≤𝑠

1
𝜌
𝑒−𝜔𝑟𝑠/𝜌. (1.48)

We call 𝜌 the density parameter here since it is equal to the expected network density
averaged over both the likelihood and the weight matrix prior as

E2𝑚
𝑛2 =

1
𝑛2 E

∑
𝑖 𝑗

𝐴𝑖 𝑗 =
1
𝑛2

∑
𝑖 𝑗

E𝜔𝑏𝑖𝑏 𝑗 = 𝜌. (1.49)

If the number of edges 𝑚 is known, this density parameter is often set to its empirical
point estimate 𝜌̂ = 2𝑚/𝑛2. However, in keeping with our fully Bayesian presentation
we instead allow the parameter to run free with the same exponential prior used for the
Erdős-Rényi graph, 𝑃(𝜌) = 𝑒−𝜌.

An example of this generative process is shown in Figure 1.12. Although we start as in
the Erdős-Rényi model by setting the overall density 𝜌, the entries of the weight matrix ω

can then fluctuate from this expectation, producing a network structure differentiated
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Figure 1.12: Example generative process for the stochastic block model of group
structure. The group each node belongs to b, represented by the colors, is first sampled.
The overall density 𝜌 is then sampled and used to generate the symmetric weight
matrix 𝜔. In the final network A the density of edges between a node in group 𝑟 and a
node in group 𝑠 is given by the entry 𝜔𝑟𝑠 . In this example the edges within groups
(colored green) are much more likely than edges between groups (red), resulting in an
assortative group structure.

by group. In this example the weight matrix generates an assortative group structure,
although the choice of ω can specify an arbitrary pattern of connections.

In many applications, we will mainly be interested in inferring the group structure b

of the network rather than the weight matrix. For this purpose we marginalize over the
possible weight matrices ω to obtain the integrated likelihood

𝑃(A|b, 𝜌) =
∫

𝑃(A|ω, b)𝑃(ω|𝜌)𝑑ω

=
∏

𝑟<𝑠 𝑀𝑟𝑠 !
∏

𝑟 𝑀𝑟𝑟 !!/𝑛𝑚𝑟
𝑟∏

𝑖< 𝑗 𝐴𝑖 𝑗!
∏

𝑖 𝐴𝑖𝑖!!︸                          ︷︷                          ︸
multinomial

∏
𝑟<𝑠

(𝜌𝑛𝑟𝑛𝑠)𝑀𝑟𝑠

(𝜌𝑛𝑟𝑛𝑠 + 1)𝑀𝑟𝑠+1

∏
𝑟

(𝜌𝑛2
𝑟/2)𝑀𝑟𝑟/2

(𝜌𝑛2
𝑟/2 + 1)𝑀𝑟𝑟/2+1︸                                                    ︷︷                                                    ︸

geometric

= 𝑃(A|M , b)𝑃(M |n, 𝜌). (1.50)

This expression again factorizes into a microcanonical picture. The edge count matrix
entries are distributed geometrically, while the positions of the edges between groups are
distributed multinomially.

In terms of this integrated likelihood, we can use Bayes’ law to write the posterior
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distribution over potential group structures and densities

𝑃(b, 𝜌|A) = 𝑃(A|b, 𝜌)𝑃(b)𝑃(𝜌)
𝑃(A) (1.51)

This can be a complex multi-modal distribution as many group structures are possible,
although often only the maximum a posteriori (MAP) estimate of the community structure
is reported as the best fit. For a more complete picture we can sample potential group
structures from this posterior distribution using Markov Chain Monte Carlo (MCMC)
methods detailed in Appendix B.6. These sampled partitions can then be summarized
in a number of ways [76, 72], including the consensus clustering method discussed in
Appendix B.7.

In Figure 1.13 we show the results of this posterior sampling for the Division IA and Big
Ten networks from earlier this section. We plot the posterior distributions of the number
of found communities 𝑞 for each network. Since a single community 𝑞 = 1 reduces to the
Erdős-Rényi random graph, its density in the posterior distribution reflects the relative
evidence of the Erdős-Rényi graph and the full SBM. The posteriors thus show that the
Big Ten conference is best described by the Erdős-Rényi model while the full Division
IA network warrants the stochastic block model. From the peak of the posterior, we also
observe that the SBM finds 𝑞 = 10 communities in the Division IA network, again slightly
less than the 12 "true" conferences. These model selections are also confirmed by the
cross-validation performances of the models on the data sets reported in Table 1.3.

Data set Division IA Big Ten conference
Model Erdős-Rényi SBM Erdős-Rényi SBM
𝑞̂MAP N/A 10 N/A 1
𝐻(A) 4335.0 3584.5 171.8 172.8
𝐻(Atest|Atrain) 859.0 710.5 33.89 34.03

Table 1.3: Table of the number of communities 𝑞̂ found by the SBM, the Bayesian
evidence 𝐻(A), and posterior-predictive 𝐻(Atest|Atrain) for Erdős-Rényi and stochastic
block models on the Division IA and Big Ten conference football match networks.

Although the stochastic block model thus offers a Bayesian framework for inferring
and justifying community structures, the model still has certain limitations. For one, the
model shares the same homogeneous distribution of degrees as the Erdős-Rényi random
model it is based upon. In order to create a model that captures both the group structure of
the SBM and the degree variation of the configuration model we will need to degree-correct
the SBM as described in Section 2.1 [69]. There we will observe that different networks
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Figure 1.13: Posterior distributions of the number of groups 𝑞 found by the stochastic
block model within the networks of football matches within only the Big Ten conference
(orange) and the entire Division IA (blue). The special case of 𝑞 = 1, for which the SBM
reduced to the Erdős-Rényi random graph is highlighted in red. We observe that while
there is considerable evidence of group structure in the Division IA network, likely into
10 groups. The Big Ten conference, however, does not meaningfully have internal group
structure.

call for various amounts of this degree correction, just as the general configuration model
encompasses a spectrum of degree variation.

Secondly, the model suffers from a so-called resolution limit where the model is unable
to find communities smaller than a certain size, even when they are well-separated [53].
This drawback is shared with modularity maximization, as seen by both the SBM and
modularity maximization finding fewer than the true 𝑞 = 12 communities of the football
network. We discuss why this occurs and how to adjust the SBM to address this effect in
Section 2.2.

More fundamentally, all stochastic block models, including the novel ones presented in
this thesis cannot find communities beyond a detectability threshold where the assortative
(or disassortative) preference that defines the groups is too weak to recover among the
noise [6]. In fact, this threshold is an inherent limitation of any method for identifying
such groups. In Section 3.1 we will observe how a wide variety of community detection
algorithms run into the same barrier. This threshold is analogous to the phase transition
of the Ising model foundational to statistical physics, a perspective we discuss more in
Appendix A.5 [92]. Although some sufficiently weak group structures can not be reliably
inferred, this thesis introduces methods to uncover groups closer to this limit in Chapter 2.
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1.2.4 Bradley-Terry model

In the last section we discussed how the stochastic block model can be used to understand
group structures in networks. In this section we describe how the Bradley-Terry model
offers a similar perspective on hierarchies, such as those described in Section 1.1.3. By
modeling these hierarchies we will be able to infer the rankings of the participants and
predict the outcomes of unobserved matches. In this section we will also introduce a
novel generalization of this model that allows us to directly infer the strength of these
hierarchies.

Before describing the full Bradley-Terry model, we can first define hierarchies in terms
of an objective function, just as the modularity intuitively describes the quality of a group
structure. Many observers of such systems, especially in sports, may come to their own,
often quite different conclusions about the appropriate ranking of the competitors. Out
of these possibilities, it is useful to have a consistent benchmark for what constitutes a
"good" or "fair" ranking given the results.

A natural starting point is to ask that a ranking is consistent with the observations in the
following sense: the favorite, the higher ranked player, should typically win the match.
To analyze a ranking in this way, we first specify it as vector s where player 𝑖 is assigned
score 𝑠𝑖 , and player 𝑖 is considered better than player 𝑗 in the ranking if they have a higher
score, 𝑠𝑖 > 𝑠 𝑗 . In this notation, we can then count up the number of times that the favorite
indeed wins as

𝑚win(A, s) =
∑
𝑖 𝑗

𝐴𝑖 𝑗1{𝑠𝑖 < 𝑠 𝑗}. (1.52)

We note that the adjacency matrix A is asymmetric in this definition since we are now
describing a directed network.

In lieu of a known rating of the participants, we can then define a ranking by maximizing
the number of times the favorite indeed wins as

s∗ = argmaxs𝑚win(A, s). (1.53)

This strategy is known as minimum violation ranking since it is equivalent to minimizing
the number of upset wins, or "violations" of the ranking. It is computationally demand-
ing to find the true optimal ranking in this sense, and heuristic algorithms are often
employed [27].

We can also use the number of favorite wins 𝑚win as a test statistic to establish the pres-
ence of a hierarchy in the same manner as the modularity demonstrates group structure.
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Figure 1.14: College football matches played in the 2022 Big Ten conference football
season. (a) Arrows represent that one team beat another, teams are vertically arranged to
minimize the number of upset victories (in red). (b) Arrows indicate that one team hosts
another. Teams are vertically positioned to minimize ranking violations. (c) The number
of times the favorite "wins" in each context, beating or hosting, are compared against
10,000 simulations where outcomes are sampled as fair coin flips.

As a null hypothesis, we use a "fair coin" model that either team is equally likely to prevail
in any given match regardless of their ranking. As an example, we can ask whether there
is significant evidence of a hierarchy present in the pattern of football victories in the 2022
season Big Ten conference [2], or if the outcomes could be just as well explained by coin
flips. Figure 1.14a plots this network with arrows pointing from the winner to the loser
of each match and the 14 teams vertically arranged according to the minimum violation
ranking. In this hierarchy, 𝑚win = 57 of the 𝑚 = 64 total matches are won by the favored
team (highlighted in green).

In Figure 1.14c this mark is compared against we could expect if each match was pure
chance. In the fair coin model, the favorite wins half the time for an average of 𝑚win = 32.
However due to random fluctuations the favorites may happen to accumulate more wins
than expected. Across the 10,000 plotted samples, however, in no simulation did the
favorite win more than 𝑚win = 47 matches. Since this is far from the number observed
within the football hierarchy, we can reject the fair coin model and conclude that genuine
gaps in skill are driving the match outcomes.

In Figure 1.14b we plot another network of the very same matches within the conference,
but now where a "win" indicates that one team hosted the other rather than beat them.
Intuitively we might expect this interaction to not be strongly driven by a hierarchy
among the teams, but rather be more akin to the coin flip model. Yet, if again identify
the minimum violations ranking, we can construct an ordering of the teams where the
favorite wins 𝑚win = 45 times. Returning to the significance testing, in only 8 of the 10,000
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Figure 1.15: Win probability 𝑝𝑖 𝑗 as a function of score difference 𝑠𝑖 − 𝑠 𝑗 in the
Bradley-Terry model as in Eq. (1.54).

simulations did random flips generate more favorite wins than this mark for a p-value
𝑃 < 0.001. In isolation this would be seen as very strong evidence of our found hierarchy,
although since this ranking is chosen among 14! = 87178291200 possible orderings, the
low p-value may not be as impressive as it first appears.

In order to establish that a hierarchy is present in a more intrinsic manner, and to make
predictions (e.g. who will win the next game?) we will again turn to generative models.
Particularly, we consider the Bradley-Terry model, named after the work of R. Bradley and
M. Terry who described it in 1952 [20], although it was (unknown to them) first introduced
much earlier, by Zermelo in 1929 [143]. In the model, the probability 𝑝𝑖 𝑗 that node 𝑖 beats
node 𝑗 is assumed to depend upon the difference 𝑠𝑖 − 𝑠 𝑗 between their scores. Specifically,
the win probability is taken to be a logistic sigmoid function of this difference as

𝑝𝑖 𝑗 =
1

1 + 𝑒−(𝑠𝑖−𝑠 𝑗) . (1.54)

This function, plotted in Figure 1.15, has a number of intuitive properties. If the two
participants are evenly matched, 𝑠𝑖 = 𝑠 𝑗 , 𝑝𝑖 𝑗 = 1/2 and each competitor is equally likely to
prevail. If node 𝑖 is considerably better than node 𝑗, 𝑠𝑖 ≫ 𝑠 𝑗 , they are very likely to win
as 𝑝𝑖 𝑗 → 1. Conversely if they are thoroughly outmatched and 𝑠𝑖 ≪ 𝑠 𝑗 , node 𝑖 is unlikely
to win as 𝑝𝑖 𝑗 → 0. This score function also critically assigns a behavioral meaning to a
particular score differential. If node 𝑖 is one "unit" above node 𝑗 in the hierarchy, they will
win with probability

𝑝𝑖 𝑗 =
1

1 + 𝑒−1 ≈ 0.731. (1.55)
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This gap then defines the meaning of a "tier" or "level" of skill differential, a difference that
leads the favorite to win roughly 70-75% of the time.

Compiling these win probabilities across all of the matches then yields the Bradley-
Terry model likelihood

𝑃(A|s) =
∏
𝑖 𝑗

𝑝
𝐴𝑖 𝑗
𝑖 𝑗 =

∏
𝑖 𝑗

(
1

1 + 𝑒−(𝑠𝑖−𝑠 𝑗)
)𝐴𝑖 𝑗

. (1.56)

Most treatments of this model directly infer the maximum-likelihood values of the scores,
although this approach can be prone to overfitting. In this thesis we instead consider a
Bayesian treatment of the Bradley-Terry model, and find that this perspective gives insight
to the nature of the hierarchies considered.

Particularly, on each score 𝑠𝑖 we introduce an independent Gaussian prior of width 𝛽/√2
for parameter 𝛽 > 0,

𝑃(s|𝛽) =
𝑛∏
𝑖=1

1
𝛽
√
𝜋
𝑒−𝑠

2/𝛽2
. (1.57)

This choice is made so that the distribution of the differences in scores 𝑠𝑖 − 𝑠 𝑗 follow a
Gaussian distribution of width 𝛽. The 𝛽 parameter therefore controls the typical difference
in score between two random nodes. Given the meaning of one unit of score difference,
𝛽 counts how many layers of skill or status are present in the hierarchy between the
typical pair. With this interpretation, we define this parameter in Chapter 4 as the depth of
competition [67].

Starting with a half-Cauchy prior Eq. (4.15) over the depth, Figure 1.16 demonstrates
the full generative process in the Bradley-Terry model. Figure 1.16a shows an example
where the depth 𝛽 = 3 is relatively high. Since the typical difference between scores is
large, most matches are won by the favorite. In contrast, Figure 1.16b illustrates a lower
depth of 𝛽 = 1 where the now smaller score differences lead to more upsets – violations
of the ranking. From this perspective we also notice that if the depth is 𝛽 = 0 all of the
scores must be the same and so all matches are even, recovering the fair coin null model
considered earlier.

Given a network A we can then take MCMC samples from the posterior distribution
of the scores s and the depth 𝛽,

𝑃(s, 𝛽|A) = 𝑃(A|s)𝑃(s|𝛽)𝑃(𝛽)
𝑃(A) . (1.58)
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Figure 1.16: Example generative process for the Bradley-Terry model of hierarchies. (a)
The depth 𝛽 is first fixed, then the scores s are sampled from a Gaussian of that width,
represented by the vertical distribution with width 𝛽 = 3. The differences of these scores
then inform who wins each match, where the higher score participant is favored. (b) This
same process starting with a depth of 𝛽 = 1. This smaller depth leads to smaller
differences in scores and so more upset wins, colored in red.

In Figure 1.17 the resulting posterior distributions of the depth for the football victories
and football hosting data sets are plotted. For the pattern of victories, we can infer a
depth of 𝛽̂MAP ≈ 1.9 within the conference, indicating that there are roughly 2 levels of
play between a random pair of teams. Particularly, the victories posterior clearly excludes
the case 𝛽 = 0, indicating strong evidence for the hierarchy over the fair coin model. On
the other hand, the pattern of hosting among the teams favors a depth of 0, indicating
that hierarchical structure is not present and that the fair coin model is more appropriate.
These conclusions are supported by direct computations of the description length and
predictive power in Table 1.4.

Data set Football wins Football hosting
Model Fair coin B-T Fair coin B-T
𝛽̂MAP N/A 1.92 N/A 0
𝐻(A) 64.00 54.43 64.00 65.92
𝐻(Atest|Atrain) 12.93 10.88 12.93 13.06

Table 1.4: Table of best the measured depth 𝛽̂MAP, Bayesian evidence 𝐻(A), and
posterior-predictive 𝐻(Atest|Atrain) for the fair coin and Bradley-Terry (B-T) models on
the football wins and hosting data sets.

In Chapter 4, we discuss how this model can be further generalized to model a "luck"
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Figure 1.17: Posterior distribution of the depth 𝛽 inferred by the general Bradley-Terry in
the football victories and football hosting data sets. There is strong evidence of a
hierarchical structure among the pattern of victories, while the pattern of hosting does
not exclude the possibility that outcomes are fully random, highlighted at 𝛽 = 0.

component of hierarchies where upsets are possible even between competitors of very dif-
ferent status. This generalization also includes the minimum violation ranking originally
considered in this section, allowing for a direct comparison of the two ranking methods.
In that chapter we also infer the depths of a variety of different data sets, ranging from
sports and games to human and animal social hierarchies. Figure 1.18 summarizes these
results.

The sports and games we consider in Figure 1.18 – highlighted in red – vary in their
depth yet tend to have a low 𝛽 compared to other contexts. Human social hierarchies (in
green), such as patterns of friendships or of faculty hiring between universities, have a
deeper, steeper hierarchy than these sports. And more than both these cases, we find that
the animal social hierarchies (in blue) are very strict, with exceedingly large 𝛽 values in
some cases. Although the model does not know the source of a given network, whether
it represents sports matches, human or animal interactions, it consistently categories the
examples by measuring the depth of each context. With this ability to measure properties
like the inequality in a hierarchy in hand, we can start to speculate and investigate what
factors lead to these contrasting effects. For example, sports leagues are designed to be
competitive for entertainment value, whereas social hierarchies are subject to no such
incentives. By considering all of these applications within a unified model we can draw
comparisons between them.
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Figure 1.18: Depths of hierarchies inferred by our model across various applications. A
depth of 𝛽 = 0 corresponds to outcomes determined by fair coin flips while higher values
of 𝛽 indicate deeper, stricter hierarchies. Full posterior distributions of 𝛽 for these cases
are given in Figure 4.2.

1.3 Contributions

This chapter has reviewed the basic definitions, frameworks, and models that the main
contributions of this thesis build upon. In the following chapters we will explore these
models in greater detail and demonstrate how they can be leveraged to gain insight to a
wide array of empirical settings.

In Chapter 2, we propose extensions of the simple stochastic block model discussed in
Section 1.2.3. In Section 2.1 we first discuss the degree-correction of the stochastic block
model, and how the model can be used to infer the extent of degree inequality within
groups. In Section 2.2 we describe how the SBM can also be extended in order to directly
measure the assortativity of a given group structure and so overcome the resolution limit
that typically prevents the model from detecting small communities.

In Chapter 3, we consider refinements to the mutual information widely used to quan-
tify the similarity of two partitions of the same set objects, including the outputs of
community detection algorithms. We address two sources of bias of the usual measure.
First, a typically neglected term that biases the measure towards labelings with many
groups, and second a biased normalization of the mutual information. After making
these corrections, we use the measure to demonstrate the relative performance and limita-
tions of a variety of community detection methods and demonstrate how our conclusions
depend on the form of the measure.

In Chapter 4, we discuss extensions of the Bradley-Terry model, and infer not only the
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depth of a hierarchy but also its inherent "luck." In this generalization we can also directly
compare the Bradley-Terry model against the minimum violations ranking described in
Section 1.2.4. We use this extension to compare a variety of hierarchies and demonstrate
that our new model can better predict unobserved match outcomes.

In Chapter 5 we conclude with a summary of the work presented here and possible
future directions of inquiry.
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Chapter 2

Group Structure

In this chapter, we explore generalizations of the stochastic block model (SBM) described
in Section 1.2.3, to model and understand a wider variety of group structures in networks.
These adjustments address inequality of degrees within groups, overall assortative pref-
erence, and variation in group relationships. In real networks we identify statistically
significant evidence of these features and improve performance of the SBM. These refine-
ments give a more detailed picture of how latent groups inform network structure across
applications.

2.1 Degree-correction of the stochastic block model

2.1.1 Introduction

In this section, we first consider an extension of the traditional SBM that incorporates
the variation in node degrees found in the configuration model. Known as degree-
correction [69], this adjustment makes the model more permissive of nodes with varying
degrees within the same group.

The usual, non degree-corrected SBM typically groups nodes of similar degree together.
This behavior aligns with the model’s foundational assumption that connection proba-
bilities are informed only by group identities, and thus that nodes within each group
behave identically, as in an Erdős-Rényi random graph. If network nodes can only be
differentiated by group, high degree nodes should belong to different groups than low
degree nodes since the two categories behave differently.

In some applications, however, this tendency identifies groups that differ from un-
derstood divisions. In a social networks, for example, individuals typically interact more
often with others who share certain group identities, like race or gender [91]. Within these
groups, significant variation in degrees can occur, as some individuals within a group are

47



more prone to making connections than others. The traditional SBM would sooner classify
these individuals based upon the number of connections they make than upon the bias
of those connections, which may be more relevant to the "true" group identities. A more
flexible model is needed to identify such groups that contain individuals with a diversity
of degrees.

Several SBM extensions have been introduced to capture increased degree heterogene-
ity [132, 146, 107]. In this work we focus on the simple model proposed by Karrer and
Newman [69], commonly referred to as the degree-corrected SBM. In this approach the
interior of each group is governed by the configuration model rather than the non degree-
corrected Erdős-Rényi model. The degree-corrected SBM thus inherits the greater degree
variation exhibited by the configuration model and identifies groups with broader degree
distributions than the typical model.

This alternative presents a natural model selection problem between the degree-
corrected and non degree-corrected SBMs. By construction the two models can iden-
tify very different group structures of the same network. Although each inferred group
structure is valid within the assumptions of its respective model, we adjudicate between
them by assessing which model does a holistically better job at reproducing the network.
Prior work has explored this question through approximate belief propagation methods
to compare the Bayesian evidence of the two models [139].

Our approach introduces a general degree-corrected SBM that embeds both the non
degree-corrected and traditionally degree-corrected SBMs as special cases. This is ac-
complished by building the SBM based upon the general configuration model introduced
in Section 1.2.2, which generalizes both the Erdős-Rényi and usual configuration models.
Just as the general configuration model can then assess the relative evidence of the models
it contains, this general degree-corrected model allows for the direct comparison of the
two SBMs without approximating their performances.

As in our earlier comparison of the configuration and Erdős-Rényi models, some real
networks require the extra flexibility degree-correction affords while others do not. In
our framework we can infer not only when this generalization is appropriate but also
measure the relevant degree variation within the groups, which we call the in-group degree
inequality 𝐺in. This Gini coefficient of latent node weights parallels the overall degree
inequality𝐺measured by the general configuration model. Through these measurements,
the general degree-corrected model offers a nuanced picture of the interplay between
degrees and group identities within networks.
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2.1.2 Traditional degree-correction

In this section, we review the traditional degree-corrected SBM (DC-SBM) [69] and demon-
strate how its assumptions and inferences differ from those of the non degree-corrected
model presented in Section 1.2.3.

The usual, non-degree corrected SBM likelihood assumes that connection probabilities
depend only on group identities. Specifically, given a group partition b and symmetric
weight matrix ω, the edge counts follow Poisson distributions with expectations

E𝐴𝑖 𝑗 = 𝜔𝑏𝑖𝑏 𝑗 , (2.1)

for an overall network likelihood

𝑃(A|ω, b) =
∏
𝑖< 𝑗

𝜔
𝐴𝑖 𝑗
𝑏𝑖𝑏 𝑗
𝑒−𝜔𝑏𝑖 𝑏𝑗

𝐴𝑖 𝑗!

∏
𝑖

(𝜔𝑏𝑖𝑏𝑖/2)𝐴𝑖𝑖/2𝑒−𝜔𝑏𝑖 𝑏𝑖 /2

(𝐴𝑖𝑖/2)! . (2.2)

In this model, the expected degree of a node 𝑖 is constant within its group 𝑟 = 𝑏𝑖 , equal to

E𝑘𝑖 =
𝑛∑
𝑗=1

E𝐴𝑖 𝑗 =
𝑞∑
𝑠=1

𝑛𝑠𝜔𝑟𝑠 . (2.3)

While fluctuations in the degrees about this expectation are possible, they tend to be small,
just as the degrees concentrate in the Erdős-Rényi model.

To induce greater degree variability we introduce to each node 𝑖 a node weight 𝜃𝑖 > 0
that represents the node’s overall propensity to interact. Like in the configuration model,
these node weights adjust the expected edge counts as

E𝐴𝑖 𝑗 = 𝜃𝑖𝜃𝑗𝜔𝑏𝑖𝑏 𝑗 . (2.4)

Since these node weights appear multiplied by the weight matrix ω, their overall nor-
malization is arbitrary as it can be absorbed by changes in the weight matrix. We thus
normalize the weights to have an average value of 1 within each group as in [116],

1
𝑛𝑟

∑
𝑖∈𝑟

𝜃𝑖 = 1. (2.5)

This choice is the natural generalization of the normalization Eq. (1.20) used in the config-
uration model. With this adjustment, the expected degrees of nodes in group 𝑟 now vary
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with their node weights as

E𝑘𝑖 =
𝑛∑
𝑗=1

E𝐴𝑖 𝑗 = 𝜃𝑖

𝑞∑
𝑠=1

𝑛𝑠𝜔𝑟𝑠 . (2.6)

By introducing variation in the node weights we can thus generate networks whose
degrees vary more within groups than in the non degree-corrected SBM.

Incorporating these weights, the degree-corrected model likelihood is

𝑃(A|θ,ω, b) =
∏
𝑖< 𝑗

(𝜃𝑖𝜃𝑗𝜔𝑏𝑖𝑏 𝑗 )𝐴𝑖 𝑗 𝑒−𝜃𝑖𝜃𝑗𝜔𝑏𝑖 𝑏𝑗
𝐴𝑖 𝑗!

∏
𝑖

(𝜃2
𝑖 𝜔𝑏𝑖𝑏𝑖/2)𝐴𝑖𝑖/2𝑒−𝜃

2
𝑖 𝜔𝑏𝑖 𝑏𝑖 /2

(𝐴𝑖𝑖/2)!

=

∏
𝑖 𝜃

𝑘𝑖
𝑖∏

𝑖< 𝑗 𝐴𝑖 𝑗!
∏

𝑖 𝐴𝑖𝑖!!

∏
𝑟<𝑠

𝜔𝑀𝑟𝑠
𝑟𝑠 𝑒−𝑛𝑟𝑛𝑠𝜔𝑟𝑠

∏
𝑟

(𝜔𝑟𝑟/2)𝑀𝑟𝑟/2𝑒−𝑛
2
𝑟𝜔𝑟𝑟/2. (2.7)

The models we discuss in this chapter will all share this likelihood and differ only in their
priors on the parameters θ and ω. Since the number of these parameters grows with
the system size, such differences in their prior distribution dramatically influence model
behavior.

In this framework, the non degree-corrected SBM uses the Dirac-delta1 prior

𝑃(θ) =
𝑛∏
𝑖=1

𝛿(𝜃𝑖 − 1), (2.8)

which fixes the node weights at 𝜃𝑖 = 1 and so recovers the non degree-corrected SBM
likelihood Eq. (2.2). To define the traditional degree-corrected SBM, we instead use a
uniform, maximum entropy prior over possible node weights θ. In terms of the volume
of the product of 𝑞 simplexes that respects the normalization condition Eq. (2.5), this is

𝑃(θ|n) =
𝑞∏
𝑟=1

(𝑛𝑟 − 1)!
𝑛𝑛𝑟−1
𝑟

. (2.9)

This prior depends on the group sizes n since they influence how many normalized
choices of θ can be made.

For both models we adopt independent and identical exponential priors on the entries
1Here we define the Dirac-delta function to correspond to point evaluation when integrated over the

product of simplexes. The typical normalization over R𝑛 would include a prefactor.
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of the symmetric weight matrix ω with expected density 𝜌 > 0,

𝑃(ω|𝜌) =
∏
𝑟≤𝑠

1
𝜌
𝑒−𝜔𝑟𝑠/𝜌 , (2.10)

along with an exponential prior on the density itself,

𝑃(𝜌) = 𝑒−𝜌. (2.11)

In Section 2.2 we will observe how model behavior changes based on the form of this
weight matrix prior. In this section, however, we will focus only on the influence of the
node weight prior 𝑃(θ) to degree-correct the model.

By integrating both the node weights θ and weight matrix ω against these priors, we
obtain the integrated, degree-corrected (DC) likelihood

𝑃DC(A|b, 𝜌) =
∫

𝑃(A|θ,ω, b)𝑃(θ|n)𝑃(ω|𝜌)𝑑θ𝑑ω

=
∏

𝑖 𝑘𝑖!
∏

𝑟<𝑠 𝑀𝑟𝑠 !
∏

𝑟 𝑀𝑟𝑟 !!∏
𝑖< 𝑗 𝐴𝑖 𝑗!

∏
𝑖 𝐴𝑖𝑖!!

∏
𝑟 𝑚𝑟 !︸                            ︷︷                            ︸

stub-matching

∏
𝑟

(
𝑚𝑟 + 𝑛𝑟 − 1
𝑛𝑟 − 1

)−1

︸                   ︷︷                   ︸
uniform

×
∏
𝑟<𝑠

(𝜌𝑛𝑟𝑛𝑠)𝑀𝑟𝑠

(𝜌𝑛𝑟𝑛𝑠 + 1)𝑀𝑟𝑠+1

∏
𝑟

(𝜌𝑛2
𝑟/2)𝑀𝑟𝑟/2

(𝜌𝑛2
𝑟/2 + 1)𝑀𝑟𝑟/2+1︸                                                    ︷︷                                                    ︸

geometric

= 𝑃(A|k,M , b)𝑃Unif(k|m, b)𝑃(M |n, 𝜌). (2.12)

By factorizing the likelihood, we highlight its microcanonical interpretation. From this
perspective the generation process begins with the geometric distribution of the edge
count matrix M . The row (or column) sums m of this matrix then set the total de-
gree within each group. In each group 𝑟, the assignment of the total degree 𝑚𝑟 among
the 𝑛𝑟 nodes is then sampled uniformly among all possible assignments in 𝑃Unif(k|m, b).
Note that this does not mean the resulting distribution of the individual degrees 𝑘𝑖 is
uniform. Rather, the full degree sequence k itself is selected uniformly among its possi-
ble configurations. Finally the network A is distributed according to the stub-matching
likelihood 𝑃(A|k,M , b) among all possible networks that share the generated degree se-
quence k and edge counts M across the partition b. This final stub-matching likelihood
is a generalization of the stub-matching Eq. (1.28) used in the configuration model, now
conditioned on the edge count matrix M across groups.
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Figure 2.1: Examples of degree distributions k sampled from the prior distributions of
the (a) non degree-corrected and (b) degree-corrected SBMs. These examples contain
two groups of 1000 nodes each, group 1 (orange) has average degree 10, and group 2
(blue) has average degree 30. In the non degree-corrected case, the multinomially
distributed degrees are concentrated about their group means and the two groups have
little overlap in degree. In the degree-corrected case the degree distribution within each
group is much broader, leading to greater overlap between the groups.

This microcanonical picture offers a direct view of how the degree-corrected SBM (DC-
SBM) differs from the non degree-corrected SBM (NDC-SBM). The non degree-corrected
likelihood, Eq. (2.2), can be factorized in the same manner as the degree-corrected likeli-
hood as

𝑃NDC(A|b, 𝜌) = 𝑃(A|k,M , b)𝑃Mult(k|m, b)𝑃(M |n, 𝜌), (2.13)

only now with a multinomial distribution of the degrees within each group

𝑃Mult(k|m, b) =
∏
𝑟

𝑚𝑟 !∏
𝑖∈𝑟 𝑘𝑖!𝑛

𝑘𝑖
𝑟

. (2.14)

The degrees of the 𝑛𝑟 nodes within group 𝑟 are thus distributed as a symmetric multino-
mial, i.e. as though a fair 𝑛𝑟-sided die is rolled𝑚𝑟 times and the outcome counts determine
the node degrees. As the total degree𝑚𝑟 within a group increases, this multinomial distri-
bution concentrates around its expectation, an even distribution of the degrees E𝑘𝑖 = 𝑚𝑟

𝑛𝑟
.

Therefore, especially in large groups, the non degree-corrected SBM indeed has a prior
expectation that nodes in the same group have similar degrees.

Figure 2.1 contains an example of this effect. In Figure 2.1a, the non degree-corrected
SBM is used to generate the degree sequence of a network split into two groups of 1000

52



nodes each, where one group has average degree 10 and the other average degree 30.
From the microcanonical formulation, this is equivalent to sampling k from the multino-
mial distribution 𝑃Mult(k|m, b) for a partition b of 2000 nodes into equally sized groups,
and m = (10000, 30000). In the non degree-corrected case, we observe that the two
groups have little overlap in their degree distribution as each group is concentrated
about its mean degree. In contrast, the degree sequence k sampled from the degree-
corrected 𝑃Unif(k|m, b) in Figure 2.1b has a much wider range of degrees within each
group. The two groups are therefore no longer solely distinguished by degree as their
distributions overlap2.

This difference in behavior of the priors impacts the inferences drawn by each model.
Since the non degree-corrected model has a prior expectation that nodes of the same
group have similar degrees, it systematically places nodes of the same degree into the
same group and nodes of different degrees into different groups.

This effect is borne out in Figure 2.2, which illustrates the consensus partitions inferred
by these models in a network of the co-purchasing of political books near the 2004 U.S.
presidential election [1]. In the figure the size of each node represents its degree, which
covers a wide range as some books are purchased with many others, while others are
rarely co-purchased. As discussed in Section 1.1.2, this network also shows signs of
political polarization, and we plot the generally more conservative books near the top of
the network, and more liberal books near the bottom.

Figure 2.2a depicts the groups of books inferred by the non degree-corrected SBM,
represented by the colors of the nodes. The model roughly splits the network into groups
along partisan lines, where the liberal books and the conservative books largely belong to
their own groups. Within each of these factions we also observe that groups are further
differentiated by degree. In the figure the blue group consists only of liberal books of high
degree, and the purple group contains only liberal books with low degree. The inferred
groups appear to be informed by a combination of both the partisan lean and the degree
of each book.

In contrast, the degree-corrected model groups together all the books that have strongly
liberal and conservative tilt into the red and blue groups of Figure 2.2b. Since the degree-
corrected model is more permissive of mixed degrees within groups, the groups it finds
have less to do with the degrees of the nodes and instead the relative biases in their
co-purchasing.

2The marginal distribution of the degrees in the uniform distribution 𝑃Unif(k|m, b) also concentrates
when the total degree is sufficiently large, although this occurs more slowly than in the multinomial
distribution 𝑃Mult(k|m, b).
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Figure 2.2: Inferred group structures of the political books network [1]. The size of each
node represents its degree and the vertical position roughly indicates each book’s
political lean. The node colors represent groups found by each model. The (a) non
degree-corrected SBM places high and low degree nodes into separate groups, the (b)
degree-corrected version finds groups spanning many degrees, and the (c) general
degree-corrected model has a mixed behavior.

The two models thus come to quite different conclusions about the underlying group
structure of the network based upon their differing assumptions about the nature of the
groups. In order to select between these options we will introduce a generalized model
that interpolates between the two variants to check which model better describes the
network.

2.1.3 General degree-correction

Just as the Erdős-Rényi and configuration models are included in the general configuration
model, we can unify both the non degree-corrected and degree-corrected models of the
previous section into a single general degree-corrected SBM.

The earlier models are distinguished only by their prior on the node weights θ. If we
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introduce a product of Dirichlet distributions with concentration parameter 𝛼in > 0,

𝑃(θ|n, 𝛼in) =
𝑞∏
𝑟=1

Γ(𝑛𝑟𝛼in)
𝑛𝑛𝑟−1
𝑟 Γ(𝛼in)𝑛𝑟

∏
𝑖∈𝑟

(
𝜃𝑖
𝑛𝑟

)𝛼in−1
(2.15)

=
𝑛∏
𝑖=1

𝜃𝛼in−1
𝑖

𝑞∏
𝑟=1

Γ(𝑛𝑟𝛼in)
𝑛𝑛𝑟𝛼in−1
𝑟 Γ(𝛼in)𝑛𝑟

, (2.16)

we can generalize both cases. Here 𝛼in = 1 corresponds to the uniform prior Eq. (1.24)
and therefore the degree-corrected model. Likewise, the limit 𝛼in → ∞ approaches the
Dirac-delta prior Eq. (1.29) and so recovers the non degree-corrected model.

As 𝛼in increases, the node weights θ and therefore the degrees k become increasingly
concentrated within each group. We thus refer to the parameter as the in-group degree
homogeneity. To infer and interpret this parameter we can borrow techniques used for the
overall degree homogeneity 𝛼 of the general configuration model. To infer the parameter
we adopt the same half-Cauchy prior distribution with median 1,

𝑃(𝛼in) = 2
𝜋(𝛼2

in + 1) . (2.17)

We may also similarly transform the homogeneity parameter to reflect the inequality of
the underlying node weights θ within the groups as measured by the Gini coefficient

𝐺in =

(
𝛼in − 1/2

𝛼in

)
. (2.18)

This in-group degree inequality is 𝐺in = 0 for the non degree-corrected model where each
node weight is identical, and 𝐺in = 0.5 for the degree-corrected model where the weights
vary. As the Gini 𝐺in runs from 0 to 1, the general model can therefore realize levels
of degree-correction both weaker and stronger than the typical degree-corrected model.
Table 2.1 summarizes the choices of these parameters that correspond to these special
cases.

Integrating the node weights against this generalized prior, the general degree-
corrected SBM likelihood is

𝑃(A|b, 𝜌, 𝛼) =
∫

𝑃(A|θ,ω, b)𝑃(θ|n, 𝛼)𝑃(ω|𝜌)𝑑θ𝑑ω
= 𝑃(A|k,M , b)𝑃(k|m, b, 𝛼)𝑃(M |n, 𝜌) (2.19)

where the distributions of the network 𝑃(A|k,M , b) and the edge counts 𝑃(M |n, 𝜌)
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Model 𝛼in 𝐺in

Non degree-corrected SBM (NDC-SBM) ∞ 0
Degree-corrected SBM (DC-SBM) 1 1/2
General degree-corrected SBM (GDC-SBM) inferred inferred

Table 2.1: Summary of the parameter values of the general degree-corrected SBM that
correspond to the models it generalizes. For each model the in-group degree
homogeneity 𝛼in and corresponding in-group degree inequality 𝐺in are given. The
general model infers these parameters from the network.

are shared with Eq. (2.12), but the degree distribution is generalized to the product of
Dirichlet-multinomial distributions

𝑃(k|m, b, 𝛼) =
𝑞∏
𝑟=1

(
𝑚𝑟 + 𝑛𝑟𝛼 − 1
𝑛𝑟𝛼 − 1

)−1 ∏
𝑖∈𝑟

(
𝑘𝑖 + 𝛼 − 1
𝛼 − 1

)
. (2.20)

The special cases 𝛼 = 1 and 𝛼 → ∞ of this Dirichlet-multinomial distribution then
correspond to the appropriate degree distributions 𝑃Unif(k|m, b) and 𝑃Mult(k|m, b) of the
contained models.

When applying this general model to our example network of political books, the best
fit value of 𝛼in ≈ 25 (or 𝐺in ≈ 0.08) lies between the non degree-corrected and degree-
corrected models. As such, the consensus partition of the books, plotted in Figure 2.2c,
is a hybrid of the partitions found by the other two models. In this example the liberal
leaning books are lumped into a single group as in the degree-corrected model while the
conservative books are differentiated by degree like the non-degree corrected case.

2.1.4 Results

In this section, we discuss the results of the variously degree-corrected models on a
selection of real networks spanning a range of sources and scales. Table 2.2 lists the 14
data sets we consider in this work arranged by their in-group degree inequality 𝐺̂in as
inferred by the general degree-corrected SBM.

Since the general model includes the other types of degree-correction as special cases,
the posterior distribution of the interpolating parameter 𝐺in reflects the relative evidence
of the models as described in Section 1.2.2. For some of these networks, the posterior
distribution is peaked at or near 𝐺in = 0, the non degree-corrected case. Other data sets
have in-group inequalities closer to 𝐺in = 0.5, the traditional degree-corrected case.

To establish statistical significance, we can consider the error bars on 𝐺in compared to
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Data set 𝐺̂in 𝑛 𝑚 Description Ref.
Football 0.00 115 613 Division IA college football matches, 2000 [57]
Power grid 0.00 4941 6594 Power lines in the Western U.S. Power Grid [135]
Karate 0.08 34 77 Zachary’s karate club friendship network [142]
Books 0.08 105 441 Co-purchasing of U.S. political books, 2004 [1]
Food web 0.09 128 2075 Carbon exchanges between Florida species [129]
Friends 0.17 198 946 High-school friend nominations [128]
Dolphins 0.21 62 159 Interactions among New Zealand dolphins [84]
Neurons 0.25 297 2148 Neural connections of the C. elegans nematode [137]
Proteins 0.28 1706 3191 Binding interactions of human proteins [123]
Coauthors 0.30 1589 2742 Co-authorships among network scientists [97]
Words 0.30 112 425 Subsequent words in Dickens’ David Copperfield [97]
Internet 0.34 3015 5539 Traffic among internet Autonomous Systems [81]
E-mail 0.42 1133 5452 E-mails sent within Rovira i Virgili University [60]
Blogs 0.60 1490 16718 Hyperlinks between U.S. political blogs, 2004 [7]

Table 2.2: Data sets in order of increasing in-group degree inequality 𝐺̂in. The number of
nodes 𝑛, edges 𝑚, and a short description are given for each network.

the special parameter values, both plotted along the y axis of Figure 2.3. For some of these
data sets, including the political books example, the posterior distribution meaningfully
overlaps with the non degree corrected case. In none of the data sets we consider, how-
ever, is there significant overlap with traditional degree-correction. The data sets instead
exhibit a range of in-group inequalities not particularly close to the special case 𝐺in = 0.5.
Considering these posterior distributions, we can also (approximately) exclude other ap-
proaches to degree-correcting SBMs, including the hierarchical prior commonly used for
microcanonical models [107], as detailed in Appendix B.9.

Much of this variation of degrees within the groups is driven by the global variation of
degrees in the network. We can quantify this overall inequality across all degrees using
the general configuration model and the degree inequality Eq. (1.35), which we notate in
this section as 𝐺total. Figure 2.3 plots this total degree inequality along the x axis against
the in-group degree inequality 𝐺in.

These two measures are correlated over our examples, although we consistently observe
less degree variation within groups than in the overall network, 𝐺in ≤ 𝐺total. For example,
the "Football" network analyzed in Section 1.2.2 has a very concentrated degree distribution
and therefore total degree inequality 𝐺total = 0. Within each of the found groups, these
degrees remain homogeneous at 𝐺in = 0, in part since there is little variation to begin
with. In contrast the "Blogs" network has both large total degree variation 𝐺total ≈ 0.68
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Figure 2.3: Total and within-group degree inequality as assessed by the configuration
model and general degree-corrected SBM.

and in-group inequality 𝐺in ≈ 0.60.
Although the two measures are certainly coupled, the fraction of the overall degree

inequality which manifests within the groups varies from network to network. While the
"Karate" and "Words" examples have a similar level of overall variation in their degrees, the
small 𝐺in of the "Karate" data set indicates that this inequality mostly manifests between
the groups, in contrast with the "Words" data set where the full variation occurs within
the groups.

For another perspective on these models and data sets, we can consider their predictive
power in cross-validation testing. In these tests, we randomly select 80% of our network to
act as the training data set Atrain, then evaluate the posterior-predictive distribution of the
remaining 20% portion of the network Atest. At this ratio, where the test data set has an
overall density 𝑓 = 0.25 times that of the training data, this posterior-predictive is found
by integrating over the model posterior distribution of all latent parameters as

𝑃(Atest|Atrain, 𝑓 ) =
∑
b

∫
𝑃(Atest|θ, 𝑓ω, b)𝑃(θ,ω, b|Atrain)𝑑θ𝑑ω. (2.21)

This can be accomplished through a combination of analytic integration and MCMC
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Figure 2.4: Figure of the log posterior-predictive performance of the degree-corrected
models discussed in this work across 50 cross-validation splits of the models relative to
the usual non degree-corrected SBM. Data sets are arranged in order of increasing
degree inequality 𝐺in.

posterior samples as detailed in Appendix B.8. This posterior-predictive then captures
how effectively a model can extrapolate from one part of the network to another.

Figure 2.4 plots the log-posterior-predictive performances of the degree-corrected mod-
els normalized to the performance of the non degree-corrected model. The median
and inter-quartile ranges across 50 cross-validation splits are recorded in each test. Al-
though the posterior-predictive here quantifies the likelihood of recovering the entire
withheld Atest, suitably normalized these figures roughly give the improved probability
of correctly predicting the position or existence of any given edge. Across these results we
note that the general degree-corrected model performs best or within the cross-validation
error of the best model for every data set. Although the traditional degree-corrected and
non degree-corrected models perform well on certain networks, they do not match the
comprehensive performance of the general model.

The data sets are presented in the figure in order of increasing in-group degree in-
equality 𝐺in from left to right. From this arrangement we can observe that the non
degree-corrected model performs better for low 𝐺in networks while the degree-corrected
model performs better for the high 𝐺in examples. This conclusion aligns with our inter-
pretation of the posterior distribution of 𝐺in and its implications for the relative evidence
of these models. As the general degree-corrected model can identify whether a network
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has low 𝐺in, high 𝐺in, or somewhere in between, it can make predictions accordingly and
generally match the performance of the best model available in each case.

2.1.5 Conclusions

In this work we have described an extension of the stochastic block model that allows an
arbitrary level of degree heterogeneity within groups. In doing this we directly generalized
both the usual SBM and the traditionally degree-corrected SBM, allowing for their direct
comparison. In tests on real networks, the general degree-corrected model outperforms
existing SBMs by model evidence and predictive power metrics. The model also allows
us to directly measure the extent to which overall inequality in the degree distribution
manifests inside groups, and so probe the relationship between node degree and group
identity. The networks we consider exhibit a wide range of degree inequalities, presenting
an opportunity to understand what drives these differences in context.

From a modeling perspective, these degree-corrections also suggest other potential
frameworks. For example, one motivation to degree-correct a model could be to truly
decouple the inferred group identities from the network degrees so that groups are based
solely upon the relative bias of their connections rather than their absolute count. Al-
though the generalized model presented in this work mitigates the strong relationship
between degree and group found in the non degree-corrected model, it does not fully
treat the degree sequence and group structure as a priori independent. Future work may
address this to formulate a truly unbiased "degree-correction."

2.2 Assortative stochastic block models

In Section 2.1 we discussed how the stochastic block model can be degree-corrected to
model degree inequality within groups. In this section we introduce another variant
of the usual SBM which directly models the assortative preference for nodes to connect
within their own group. This extension enables us to directly measure group assortativity,
identify more and smaller groups than the traditional SBM, and improve the predictive
performance of the model.

2.2.1 Introduction

As discussed in Section 1.1.2, groups often influence network structure through a assor-
tative preference where nodes interact more often within their group than outside of it.
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This preference, in fact, is often used to define what a group or a community of nodes in
a network means. For example, the modularity measures this tendency by counting the
number of edges between groups above what chance predicts. Modularity maximization,
one of the most popular community detection methods, therefore defines network groups
as the tightly knit clusters of nodes that exhibit the most assortative behavior.

Yet depending on the context of the system, groups can inform network structure
in more complex ways than pure assortativity. Some networks may, for example, be
disassortative along group lines, as nodes are more likely to interact outside their group
than within it. Methods like modularity maximization that search only for assortative
structure are unable to identify these types of groups. Furthermore, although nodes
of a network may on average exhibit an assortative or disassortative preference, not all
groups need to behave identically. Some groups may be assortative while other groups
are disassortative. Likewise, certain pairs of groups may be more or less likely to interact
with each other than the average pair.

In this work we introduce stochastic block models that capture and measure this rich
space of possible group structures in networks. While modularity maximization’s narrow
definition of network groups precludes it from identifying more complex structures, the
expressive models we describe can identify latent groups beyond the scope of more
restricted methods.

We build these models upon the usual SBM described in Section 1.2.3. Although this
model has some baseline flexibility in its inferences, it is still restricted in a number of
ways. For one the model suffers from a resolution limit where it cannot identify more than
a certain number of groups, roughly 𝑞 ∼ √

𝑚, even when those groups are clearly distinct.
This drawback is shared with modularity maximization, where the resolution limit was
first identified [53]. In this work we demonstrate that this limit ultimately stems from an
inflexibility of the SBM: that it does not directly incorporate assortativity in its modeling.

The SBM assumes a priori that nodes are equally likely to connect both within and
outside of their group. Yet, when networks exhibit a strong assortative preference it is
possible to identify groups beyond the resolution limit by leveraging knowledge of that
assortativity. By generalizing the usual model into an assortative SBM we can thus identify
these smaller scale groups. Furthermore, by parameterizing this effect the generalized
model directly infers how assortative a given network is, providing mechanistic insight
into the system it represents.

This type of approach has been considered in other work. For example, the well-studied
planted partition (PP) model [48] and recent assortative SBM proposed by Zhang and
Peixoto [144] both parametrize this relative preference to connect within versus between
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groups. In this work, we propose two new assortative models in this lineage. First, a
"simple" assortative SBM that generalizes the usual SBM in a more direct manner than
previous treatments. Second, a "general" assortative SBM that contains all the other
assortative models we consider as special cases.

This general assortative SBM not only parametrizes network assortativity but also how
much variation is present in the relationships between groups. Each assortative model we
consider makes different assumptions about these variations. For example, the planted
partition model assumes all groups are internally identical and that all pairs of groups are
equally likely to connect, while the simple assortative model allows for more deviations
from this baseline. The general assortative SBM measures how much of this variation
occurs within and between groups and therefore which special case best fits a given
network.

Applied to a range of real networks, we find strong evidence for our new assortative
models and demonstrate that they considerably improve predictive performance over the
usual SBM and other assortative models. These new methods allow for a more detailed
understanding of networks by being flexible enough in their assumptions to undercover
more complex group structures than previously possible.

2.2.2 Resolution limit

The traditional stochastic block model described in Section 1.2.3 is bound by a resolution
limit. Even if a network "truly" contains many small well-separated communities, the
usual SBM is not able to recover them. This resolution limit was first observed [53] as a
weakness of the modularity maximization method discussed in Section 1.2.3, but hampers
the SBM as well.

This effect can be understood using the microcanonical form Eq. (1.50) of the SBM,
reproduced as

𝑃(A|b, 𝜌) =
∏

𝑟<𝑠 𝑀𝑟𝑠 !
∏

𝑟 𝑀𝑟𝑟 !!/𝑛𝑚𝑟
𝑟∏

𝑖< 𝑗 𝐴𝑖 𝑗!
∏

𝑖 𝐴𝑖𝑖!!︸                          ︷︷                          ︸
multinomial

∏
𝑟<𝑠

(𝜌𝑛𝑟𝑛𝑠)𝑀𝑟𝑠

(𝜌𝑛𝑟𝑛𝑠 + 1)𝑀𝑟𝑠+1

∏
𝑟

(𝜌𝑛2
𝑟/2)𝑀𝑟𝑟/2

(𝜌𝑛2
𝑟/2 + 1)𝑀𝑟𝑟/2+1︸                                                    ︷︷                                                    ︸

geometric

= 𝑃(A|M , b)𝑃(M |n, 𝜌). (2.22)

Interpreted as an encoding, the description length of the network thus has two parts

𝐻(A|b, 𝜌) = 𝐻(A|M , b) + 𝐻(M |n, 𝜌), (2.23)
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Assortative SBM

Figure 2.5: Description lengths of an example network given two potential partitions.
The "true" partition into the 8 connected components is compared to a coarsening into
only 4 groups. The usual SBM prefers the coarsened partition, indicated by the smaller
description length, since the resolution limit prevents it from identifying the small
groups. The assortative SBM does not have this limitation and finds the true partition.

the transmission of the edge count matrix M and the transmission of the network A given
those edge counts. The best-fit group structure found by the SBM is the partition b that
minimizes this overall description length, a balancing act between the two terms3.

To observe the resolution limit, we construct synthetic examples of networks where the
"true" partition does not minimize the model’s description length, indicating that model
fails to recover the underlying group structure. Figure 2.5 contains such an example. In the
figure two partitions of the same network of 32 nodes are considered. On the left, the nodes
are partitioned into the 8 connected components while on the right these components are
paired off into 4 larger groups. The 8 groups are entirely disconnected from each other,
and provide clear assortative group structure. Yet, the usual SBM prefers the 4 groups
as indicated by the smaller description length and so higher posterior probability of that
partition.

This shortfall arises due to how the description length Eq. (2.23) evolves with the
number of groups 𝑞. Intuitively, the network transmission term requires specifying the
placement of each of the 𝑚 edges at a rough information cost 𝐻(A|M , b) ∼ 𝑂(𝑚). To
transmit the 𝑞× 𝑞 edge count matrix, we must specify each of its entries at a cost that scales
as𝐻(M |n, 𝜌) ∼ 𝑂(𝑞2). Therefore when 𝑞 ≳

√
𝑚 the cost to transmit the edge count matrix

dominates the network term and becomes prohibitively expensive. The model therefore
will never report a partition with more than 𝑂(√𝑚) groups, even when the groups are
otherwise apparent. Appendix B.10 contains a more careful treatment of this effect, and
places the maximum number of groups at roughly 𝑞 ∼

√
𝑚/𝑒.

3This gives the maximum likelihood partition b, the MAP estimate also includes the prior 𝑃(b), although
it does not influence the resolution limit.
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In Section 2.2.5 we demonstrate how this resolution limit systematically prevents the
stochastic block model from identifying small groups in synthetic tests. Likewise in
Section 2.2.6 we show how the usual SBM infers a relatively small number of groups in
many real networks.

2.2.3 Simple assortative SBM

In this section we generalize the usual SBM in order to allow the model to overcome the
resolution limit. This adjustment is made in a similar spirit to the generalized modular-
ity [115] which overcomes this limit by introducing a parameter to the modularity. In our
case, the newly assortative model both avoids this limitation and allows us to measure the
assortative preference.

In the usual SBM, the weight matrix entries follow independent and identical exponen-
tial distributions with density 𝜌 > 0,

𝑃(ω|𝜌) =
∏
𝑟<𝑠

1
𝜌
𝑒−𝜔𝑟𝑠/𝜌. (2.24)

We define the simple assortative SBM by separately distributing the diagonal and off-
diagonal weight matrix entries with densities 𝜌in, 𝜌out > 0 respectively as

𝑃ASBM(ω|𝜌in, 𝜌out) =
∏
𝑟<𝑠

1
𝜌out

𝑒−𝜔𝑟𝑠/𝜌out
∏
𝑟

1
𝜌in

𝑒−𝜔𝑟𝑟/𝜌in . (2.25)

These new parameters control the overall density of edges found within and between
groups in the network. We thus refer to them as the in-group density 𝜌in and out-group
density 𝜌out.

We recover the non-assortative SBM from the assortative model when these densities
are equal, 𝜌in = 𝜌out = 𝜌. To infer the parameters we introduce exponential priors as used
for the usual density,

𝑃(𝜌in) = 𝑒−𝜌in , 𝑃(𝜌out) = 𝑒−𝜌out . (2.26)

Once measured, these parameters give a more detailed picture of network behavior than
the overall density 𝜌 alone. For example, the ratio 𝜌in/𝜌out represents the overall assorta-
tivity, the preference for nodes to connect to others in their group over those outside their
group.

Integrating over this new weight matrix distribution, the integrated likelihood of the
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assortative SBM is

𝑃(A|b, 𝜌in, 𝜌out) =
∫

𝑃(A|ω, b)𝑃(ω|𝜌in, 𝜌out)𝑑ω (2.27)

=
∏

𝑟<𝑠 𝑀𝑟𝑠 !
∏

𝑟 𝑀𝑟𝑟 !!/𝑛𝑚𝑟
𝑟∏

𝑖< 𝑗 𝐴𝑖 𝑗!
∏

𝑖 𝐴𝑖𝑖!!︸                          ︷︷                          ︸
multinomial

∏
𝑟<𝑠

(𝜌out𝑛𝑟𝑛𝑠)𝑀𝑟𝑠

(𝜌out𝑛𝑟𝑛𝑠 + 1)𝑀𝑟𝑠+1

∏
𝑟

(𝜌in𝑛2
𝑟/2)𝑀𝑟𝑟/2

(𝜌in𝑛2
𝑟/2 + 1)𝑀𝑟𝑟/2+1︸                                                          ︷︷                                                          ︸

geometric

= 𝑃(A|M , b)𝑃(M |n, 𝜌in, 𝜌out). (2.28)

This shares the stub-matching network distribution 𝑃(A|M , b) with the usual SBM al-
though the edge count matrix entries are now geometrically distributed with distinguished
means




E𝑀𝑟𝑟 = 𝜌in𝑛2
𝑟

E𝑀𝑟𝑠 = 𝜌out𝑛𝑟𝑛𝑠 .
(2.29)

The ability for the simple assortative SBM to adapt to highly assortative networks
enables it to surpass the resolution limit and identify more groups than the usual SBM.
For the disconnected group examples that troubled the usual SBM in Section 2.2.2, we
now have the separate in-group density 𝜌in = 𝑞 2𝑚

𝑛2 and out-group density 𝜌out = 0. For
these values, the assortative model assumes that the off-diagonal entries of the edge count
matrix vanish, and only models the non-zero diagonal elements 𝑀𝑟𝑟 .

This significantly reduces the information cost 𝐻(M |n, 𝜌in, 𝜌out) to transmit the edge
counts in the assortative model. Only the 𝑞 diagonal elements need to be transmitted
at an information cost of 𝑂(𝑞), rather than the usual SBM which can not take advantage
of this structure and incurs a 𝑂(𝑞2) cost for the entire matrix. The model can therefore
report a partition with many more groups without incurring a penalty that dominates
the 𝑂(𝑚) network transmission. As detailed in Appendix B.10, the assortative SBM is
therefore capable of finding many more, smaller groups than the non-assortative model.
In Section 2.2.6, we observe that the assortative SBM indeed makes use of this capacity
and identifies more groups in real networks than the usual SBM.

2.2.4 General assortative SBM

In the previous section we discussed a simple assortative SBM that allows us to circumvent
the resolution limit. In this section we discuss a further extension of the model which also
includes alternative assortative SBMs that have been considered elsewhere. By defining
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this general assortative SBM as a nested model, we can directly compare these special cases
against each other.

The first of these alternatives is known as the planted partition (PP) model. In this widely
studied model [48], often itself known as the "stochastic block model," the probability of a
connection between nodes depends only on whether those nodes are in same or different
groups. That is, the weight matrix is fixed to be

𝜔𝑟𝑠 =



𝜌in 𝑟 = 𝑠

𝜌out 𝑟 ≠ 𝑠.
(2.30)

This prescription may also be written as a Dirac-delta function prior over weight matricesω
as

𝑃PP(ω|𝜌in, 𝜌out) =
∏
𝑟<𝑠

𝛿(𝜔𝑟𝑠 − 𝜌out)
𝑞∏
𝑟=1

𝛿(𝜔𝑟𝑟 − 𝜌in). (2.31)

This prior leads to different behavior than the SBMs of the last section. Figure 2.6
compares the generative process of each model along with an example of a sampled edge
count matrix M . In Figure 2.6a, the traditional SBM begins with weight matrix entries ω
independently and exponentially distributed with density 𝜌 that are then Poisson sampled
to generate the edge count matrixM . This leads to a good deal of variation in the observed
edge counts as the weight matrix makes some pairs of groups inherently more or less prone
to interact. Comparing the diagonal and off-diagonal elements, this does not result in an
overall assortative or disassortative preference.

Figure 2.6b repeats this picture for the simple assortative SBM, where now a higher
in-group density 𝜌in generates an assortative preference in the weight and edge count
matrices, along with some variation in those entries. Figure 2.6c compares this to the PP
model where the weight matrix ω is again assortative but the entries are fixed to their
expected values. As a result, while the PP model shares the assortative preference of the
simple ASBM, the edge count matrix M has far smaller (although non-zero) fluctuations.

To bridge the gap between the PP model, defined by the Dirac-delta prior Eq. (2.31),
and the simple ASBM with prior Eq. (2.25),we will use an interpolation strategy similar
to the general degree-correction of Section 2.1. We use independent gamma distributions
on the weight matrix entries with mean 𝜌in and homogeneity parameter 𝜆in > 0 on the
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Figure 2.6: Examples of the generative process of the edge count matrix M in the (a)
traditional SBM, (b) simple assortative SBM, and (c) planted partition model. In each
case the density parameter(s) are first sampled, followed by the weight matrix ω, which
generates the observed edge count matrix M . Depending on the model, these steps
produce final edge counts with and without an assortative preference (high diagonal
counts) and to different levels of variation in the entries.
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Model 𝜌in 𝜌out 𝜆in 𝜆out vin vout

Traditional SBM 𝜌in = 𝜌out 1 1 1/2 1/2
Simple ASBM inferred inferred 1 1 1/2 1/2
Hybrid ASBM inferred inferred 1 ∞ 1/2 0
PP model inferred inferred ∞ ∞ 0 0
General ASBM inferred inferred inferred inferred inferred inferred

Table 2.3: Summary of the parameter values of the general assortative SBM presented in
this work that correspond to the models it generalizes. In the traditional SBM both the
in-group and out-group densities must be the same, 𝜌in = 𝜌out, although this overall
density is inferred. For the assortative SBMs and planted partition model, each density is
separately inferred from the data. These models are then distinguished by their
homogeneity parameters 𝜆in and 𝜆out, which may also be expressed as the variation
parameters vin and vout.

diagonal, and mean 𝜌out and parameter 𝜆out > 0 off the diagonal4 as

𝑃(ω|𝜌in, 𝜌out,𝜆in,𝜆out) =
∏
𝑟<𝑠

(
𝜆out
𝜌out

)𝜆out 𝜔𝜆out−1
𝑟𝑠

Γ(𝜆out) 𝑒
−𝜆out𝜔𝑟𝑠

𝜌out

∏
𝑟

(
𝜆in
𝜌in

)𝜆in 𝜔𝜆in−1
𝑟𝑟

Γ(𝜆in) 𝑒
−𝜆in𝜔𝑟𝑟

𝜌in . (2.32)

The parameters 𝜆in and 𝜆out control how homogeneous the weights are on and off of the
diagonal. As 𝜆in and 𝜆out diverge, these gamma functions approach Dirac-delta functions
and so recover the planted partition model Eq. (2.31) where all weight matrix values are
identical on/off the diagonal. If instead 𝜆in = 𝜆out = 1 the gamma distributions become
exponential distributions, recovering the simple assortative SBM and allowing for some
variation in the weight matrix entries. As such we can further recover the traditional SBM
by setting the in and out-group densities equal as 𝜌in = 𝜌out. Table 2.3 summarizes the
values of these parameters that correspond to the special cases in the general model.

To infer these homogeneity parameters from a network we introduce half-Cauchy priors
on the 𝜆in,𝜆out > 0 as

𝑃(𝜆in) = 2
𝜋(𝜆2

in + 1) , 𝑃(𝜆out) = 2
𝜋(𝜆2

out + 1) . (2.33)

Once inferred we can also convert these homogeneity measures into the in-group varia-
tion vin and out-group variation vout that measure the Gini coefficients of the underlying

4In terms of the usual shape and scale parameters of the gamma distribution, the entries are distributed
as 𝜔𝑟𝑟 ∼ Γ(𝜆in , 𝜌in/𝜆in) and 𝜔𝑟𝑠 ∼ Γ(𝜆out , 𝜌out/𝜆out).
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weight matrix entries within and between the groups as

vin =

(
𝜆in − 1/2

𝜆in

)
, vout =

(
𝜆out − 1/2

𝜆out

)
. (2.34)

As shown in Table 2.3, the planted partition model has zero variation vin = 0, vout = 0 in
the weight matrix entries. In contrast the usual and simple assortative SBMs have greater
variation vin = vout = 1/2. By inferring these variation parameters in a network we can
assess which of these models fits it best.

Integrating the likelihood Eq. (2.2) over this general weight matrix prior yields

𝑃(A|b, 𝜌in, 𝜌out,𝜆in,𝜆out) = 𝑃(A|M , b)𝑃(M |n, 𝜌in, 𝜌out,𝜆in,𝜆out) (2.35)

for the same stub-matching network likelihood 𝑃(A|M , b) as before and an edge count
matrix with negative binomial entries of the same means and parameters,

𝑃(M |n, 𝜌in, 𝜌out,𝜆in,𝜆out) =
∏
𝑟<𝑠

(
𝑀𝑟𝑠 + 𝜆out − 1

𝜆out − 1

)
𝜆out

𝜆out(𝜌out𝑛𝑟𝑛𝑠)𝑀𝑟𝑠

(𝜌out𝑛𝑟𝑛𝑠 + 𝜆out)𝑀𝑟𝑠+𝜆out

×
∏
𝑟

(
𝑀𝑟𝑟/2 + 𝜆in − 1

𝜆in − 1

)
𝜆in

𝜆in(𝜌in𝑛2
𝑟/2)𝑀𝑟𝑟/2

(𝜌in𝑛2
𝑟/2 + 𝜆in)𝑀𝑟𝑟/2+𝜆in

. (2.36)

Aligning with the special cases, each of this negative binomial distributions reduces to a
geometric distribution for parameter 𝜆 = 1 and a Poisson distribution as 𝜆 → ∞.

This general form of the model also includes another assortative SBM introduced by
Zhang and Peixoto [144]. Like the planted partition model and simple ASBM, this model
avoids the resolution limit by separately parameterizing the in- and out-group densities.
In its non degree-corrected form, the model uses a geometric distribution of edge counts
within groups and a Poisson distribution of edge counts between groups. The model
is therefore represented by the choice of homogeneity parameters 𝜆in = 1,𝜆out = ∞ or
equivalently variations vin = 1/2, vout = 0.

The model therefore assumes that while there can be variation in the in-group densities,
that some groups may be more tightly connected than others, all pairs of distinct groups
are equally likely to connect with each other. Since this choice is a mixture of the simple
ASBM and the PP model, we will refer to it as the hybrid ASBM in our analysis. Since
the general ASBM includes the simple ASBM, PP model, and hybrid ASBM as special
cases, we can evaluate which of them most appropriately captures the behavior of a given
network from the posterior distribution of the variation parameters.
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2.2.5 Synthetic tests

To understand the relative strengths of the models presented in the previous sections
we can consider synthetic tests of their performances. In these tests we will construct a
network with a "true" planted partition and evaluate how well each model can recover
those true groups. We will consider two types of synthetic networks to highlight different
aspects of the models.

In the first of these tests, the "Symmetric" case, we partition a network of 𝑛 = 1000
nodes into 𝑞 equally sized groups. These networks exhibit an assortative preference and
so connect more often within than outside the groups. We assign to each group 𝑟 the
same number of internal connections,𝑀𝑟𝑟 , and connect each pair of distinct groups 𝑟 and 𝑠
with the same number of edges 𝑀𝑟𝑠 . In terms of our variation parameters, these networks
have no variation within or between groups, vin = vout = 0, like the planted partition
model. The total of 𝑚 = 2500 edges are then distributed according to the stub-matching
likelihood 𝑃(A|M , b) to generate a network with average degree 𝑐 = 5 and this symmetric
structure M .

A smaller example of such a network is given in Figure 2.7a. In our full networks, the
ratio of internal to external connections is set such that the signal to noise ratio SNR = 3
is constant, as described in Appendix B.11. This choice is made so that as the number of
groups increases, the inherent difficulty of the community detection problem is constant
and well above the detectability threshold [6, 42] at SNR = 1 below which recovering the
true groups is not possible, even for the planted partition model.

Figure 2.7b demonstrates the results of the various SBMs on these networks as the
number of true groups ranges from 10 to 100. For each number of groups we generate
25 synthetic networks and report ranges of performance. To fit each model to a network
we use Monte Carlo methods to sample from the posterior distribution of possible group
structures and model parameters as detailed in Appendix B.6. In each case the sampled
group structures are then summarized using the consensus clustering method of Ap-
pendix B.7. To assess model performance, the inferred number of groups is compared
against the true count, and the overlap of the found partition with the true group structure
is quantified with the normalized mutual information measure described in Chapter 3.

All four assortative models identify a number of groups quite close to the true number
across these symmetric tests. The traditional SBM, however, runs into the resolution
limit explained in Section 2.2.2 and is unable to identify more than ∼ 30 groups even
when many more groups are present. The group truth similarity measures tell a similar
story. No model can recover the true groups exactly and achieve a NMI score of 1 due
to the inherent uncertainty in their inferences. However, the traditional SBM performs
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Figure 2.7: (a) Examples of two types of synthetic networks and their edge count
matrices. In the "Symmetric" case all pairs of groups are equally likely to connect while
only neighboring groups connect in the "Ring" case. (b) Results of fitting the models
presented in this work to synthetic networks of each type as the true number of groups
ranges from 10 to 100. Inferred partitions are compared against the truth by comparing
the number of groups found and using the normalized mutual information [66]. In both
tests the traditional SBM is unable to detect more than ∼ 40 groups. In the symmetric
case this is caused by the resolution limit while in the ring case it is due to insufficient
out-group variation vout. While the planted partition and hybrid assortative models
perform well in the symmetric case, they perform very poorly for the ring cases. The
general ASBM performs well across all cases considered.
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considerably worse than the assortative models as it passes the resolution limit at 𝑞 ∼ 30.
To better differentiate between the assortative SBMs that all perform similarly on the

symmetric test, we also consider synthetic "Ring" networks with greater variation in their
planted group structure. These networks share the same number of nodes and edges as
the symmetric examples, and likewise have no variation vin = 0 in the connections within
each group. Where these networks differ is that each group only connects to itself and its
two neighboring groups in a ring as in Figure 2.7a. This introduces significant variation
in the off-diagonal elements of the edge count matrix that increases with the number of
groups. The ring networks also differ in having no overall assortativity, 𝜌in = 𝜌out. In
this sense the ring networks ask the models to find groups with the opposite strategy as
the symmetric test cases. While the symmetric case is structureless apart from the shared
assortative in-group preference, the ring case has no such preference, only the non-trivial
structure of connections between the groups.

This difference leads the models to very different conclusions in Figure 2.7b. First, the
PP model and the hybrid ASBM preform very poorly by either metric since both models
assume each pair of distinct groups is equally likely to connect as vout = 0. Since the signal
that defines the ring network groups is precisely this out-group variation, neither model
can identify meaningful communities. The traditional SBM performs well in many of these
cases, as it allows for some amount of variation, assuming vout = 1/2. When the number
of communities is large, however, the true variation in the out-group connections is even
greater than the traditional model assumes and its performance suffers. We note that
this failure is related to, but distinct from, the resolution limit observed in the symmetric
tests. The simple ASBM comes to the same conclusions as the traditional SBM since the
models are equivalent when 𝜌in = 𝜌out. Only the general ASBM is able to consistently
recover the appropriate number of communities as the number of groups and out-group
variation increase since the model is flexible enough to infer the appropriate value from
the network alone.

2.2.6 Results

In this section we move from synthetic tests to consider the inferences and performances
of these assortative models on real network data sets. We apply the models to the same
basket of networks considered when degree-correcting the SBM, listed in Table 2.2.

Figure 2.8 plots the number of groups 𝑞ASBM found by the simple assortative SBM
against the number 𝑞SBM identified by the usual SBM along with error bars on these
inferences. In some cases the assortative model identifies many more groups than the
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Figure 2.8: Comparison of the number of groups 𝑞SBM found by the traditional SBM with
the number 𝑞ASBM found by the simple assortative SBM in the networks of Table 2.2. The
assortative model consistently identifies more groups than the usual SBM, suggesting
that the usual SBM is hampered for these networks by the resolution limit. The point
colors are meant only to help distinguish the data sets.
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Figure 2.9: Typical in-group and out-group densities inferred by the general assortative
SBM for the data sets listed in Table 2.2. Most of the data sets are assortative, 𝜌in > 𝜌out,
while some data sets are mildly disassortative, 𝜌in < 𝜌out. Especially in the assortative
networks, the posterior distributions of these parameters are well separated from the
non-assortative case 𝜌in = 𝜌out and so exclude the usual non-assortative SBM.

traditional model, particularly when both models agree that many groups are present.
This suggests that the usual SBM is prevented from finding the larger true number of
groups 𝑞ASBM by the resolution limit in these networks, as described in Section 2.2.2.

Figure 2.9 plots the in- and out-group densities 𝜌in and 𝜌out found by the simple
ASBM. Depending on the network, we observe a wide range of overall assortative pref-
erences 𝜌in/𝜌out. Some networks like the "Food web," "Proteins," and "Words" data sets
exhibit disassortative structure as 𝜌in < 𝜌out. In these applications, the nodes possess
group characteristics that lead them to more readily interact outside their group than
within it.

In the food web, these groups may map on to trophic levels of the ecosystem where
carbon flows are more likely to occur between species of separate levels. In the protein
network, proteins may similarly belong to functional groups that typically interact with
other proteins of different complementary functions. Likewise the words of our network
may belong to grammatical categories like adjectives or nouns that are likely to follow
words of a different category. Now, these claims are mere speculations as to how our
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inferred partitions map onto intuition about these settings. A proper analysis of these
individual applications is beyond our expertise and the scope of this work but could be a
fruitful application for this type of model.

In the figure we also observe many networks with strongly assortative groups, most
notably the "Coauthors," "Power grid," and "Football" examples. Across these cases such
assortative behavior could naturally arise from either strong sub-field distinctions, geo-
graphic barriers, or conference systems. By allowing the overall assortativity to vary as
an inferred parameter, the assortative SBM can directly measure the size of this in-group
preference across these settings. In Appendix B.12 we compare this assortativity measure
to the modularity of the found partitions, and discuss how the two measurements measure
the strength of group structure in contrasting, complementary ways.

The size of this assortative preference also appears to drive much of the disagreement
between the numbers of groups found by the traditional and assortative SBMs in Figure 2.8.
For example, the usual SBM finds only 10 groups in the highly assortative "Coauthors"
network while the assortative model identifies over 70.

Figure 2.9 critically also includes error bars that represent the posterior distributions
of the in- and out-group densities. Since the simple ASBM includes the usual SBM as
the special case where these densities are equal, 𝜌in = 𝜌out, its posterior distribution
demonstrates for which networks the assortative generalization is justified over the non-
assortative model. In some networks the posterior density distribution meaningfully
intersects with the highlighted non-assortative case, meaning that we cannot reject the
usual SBM. For other networks, however, the posterior distribution is well-separated from
the line of equality indicating that there is sufficient assortative (or disassortative) signal
in the network to justify the more general model.

This leaves us to adjudicate among the assortative models we have considered. As
described earlier, this can be done using the posterior distributions of the in- and out-
group variation parameters vin and vout within the general ASBM model, since it includes
all the assortative models as special cases. Figure 2.10 plots the posterior distributions of
the variation parameters found in the same networks of the previous figures. The inferred
parameter values differ dramatically depending on the network considered and reveal
information about the nature of the underlying group structures.

For example, the "Football" network has little in-group variation at vin ≈ 0.04, yet has
statistically significant out-group variation vout ≈ 0.36. This aligns with our understanding
of the collegiate football conference system discussed in Section 1.1.2. Internally each
conference operates in roughly the same manner as teams agree to play a fixed number
of games, typically 8, within their conference. Out-of-conference games, however, may be
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Figure 2.10: Variation in the in-group and out-group weights vin and vout as assessed by
the general assortative SBM. The corresponding in and out-group homogeneity
parameters 𝜆in and 𝜆out are plotted as well.

more likely to occur between certain pairs of conferences than others.
Although the networks cover a range of variation parameters, their posterior distri-

butions tend to be well-separated from the assortative models, whose parameter values
are highlighted by the gray "X"s. Although the simple ASBM is competitive with the
full general ASBM for some networks, the hybrid ASBM and PP model are thoroughly
excluded for these data sets since they assume no out-group variation, a strong feature of
most of these networks.

These general conclusions are also supported by comparing the predictive power of
these models in a cross-validation context. In Figure 2.11 the log-posterior-predictive
performance of the assortative models over 50 cross-validation splits are plotted relative
to the performance of the traditional (non-assortative) SBM. Higher values in this figure
indicate that the model can more effectively extrapolate from a randomly chosen 80%
subset of the network to the remaining 20%. Across most of these examples we find that
the simple ASBM and general ASBM trade positions as the top performing model. As the
data sets are arranged from least to most assortative, the figure illustrates that in strongly
assortative networks the assortative models naturally gain a significant advantage over
the traditional SBM. In most cases we also observe that although the PP model and the
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Figure 2.11: Figure of the log-posterior-predictive performance of the assortative models
discussed in this work across 50 cross-validation splits of the models relative to the
traditional (non-assortative) SBM. Data sets are presented from left to right in order of
increasing assortativity 𝜌in/𝜌out. Downward arrows indicate that model performance is
below the plotted range. The general and simple ASBM presented in this work
consistently outperform alternative models in these tests, particularly for highly
assortative data sets.
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hybrid ASBM model this assortativity, their assumptions of no out-group variation hurt
their predictive performance, for some data sets considerably.

We also note that the scale of this figure is considerably larger than the corresponding
Figure 2.4 describing degree-correction of the SBM. While appropriate degree-correction
of the SBM yields improvements of up to 4% in predictive power, the assortative mod-
els realize gains over 10% in certain cases. The difference between the best and worst
performing assortative models is also much more significant.

2.2.7 Conclusions

In this work we have described a second generalization of the typical stochastic block
model that infers both the assortativity of a network and the variation in its group structure.
These refinements allow the SBM to find more groups, surpassing the resolution limit,
and to perform better on real network data by achieving both more efficient network
compression and improved predictive performance.

Since the assortative treatment described in this section is entirely independent of
the general degree-correction presented in Section 2.1, both generalizations can be made
simultaneously as shown in Appendix B.8. This joint model then inherits the benefits of
both model extensions and allows for the simultaneous inference of the many new network
parameters. The network examples of this chapter exhibit a wide range of behavior
across all these measured dimensions, allowing us to draw sharp contrasts between their
structures. We hope that in future work these tools can be applied to better understand
the relationship between these networks and broader contexts that inform them.
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Chapter 3

Information Theory and Clustering Similarity

In the previous chapter we presented novel methods to identify groups in networks. We
evaluated and compared these models in a number of ways, mostly with intrinsic measures
like network description length and cross-validation tests. Occasionally we employed a
different type of assessment where results are compared to knowledge extrinsic to a
network, such as known metadata or "true" planted partitions. For example in Section 2.2.5
we generated synthetic networks alongside known communities, and evaluated models
by how well they recover the truth from the network alone. In this context and others, we
must quantify the similarity between the found groups and the true groups.

In this chapter, we present an information theoretic measure for comparing generic
clusterings. While we apply the framework to the community detection context,
it pertains to a much wider class of clustering similarity problems. This measure,
known as the mutual information, traditionally has a number of shortcomings. In
Section 3.1 we address its bias towards clusterings with too many groups, and in Sec-
tion 3.2 we resolve a bias introduced in its normalization. These sections are based
upon [65] and [66] respectively, both works written in collaboration with Mark New-
man and Alec Kirkley. Code implementing our improved measure can be found at
https://github.com/maxjerdee/reduced_mutual_information.

3.1 Mutual information of clusterings

Mutual information is commonly used as a measure of similarity between competing la-
belings of a given set of objects, for example to quantify performance in classification and
community detection tasks. As conventionally defined, however, the mutual information
can return biased results because it neglects the information cost of the so-called contin-
gency table, a crucial component of the similarity calculation. In principle the bias can be
rectified by subtracting the appropriate information cost, leading to the modified measure
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known as the reduced mutual information, but in practice one can only ever compute an
upper bound on this information cost, and the value of the reduced mutual information
depends crucially on how good a bound is established. In this section we describe an im-
proved method for encoding contingency tables that gives a substantially better bound in
typical use cases, and approaches the ideal value in the common case where the labelings
are closely similar, as we demonstrate with extensive numerical results.

3.1.1 Introduction

A common task in data analysis is the comparison of two different labelings of the same
set of objects. In this thesis we have focused on community detection, where algorithms
attempt to divide a network into groups based on clues in the network structure. We have
done this under the presumption that these topological groups are correlated with exoge-
nous properties of network nodes, such as demographics in a social network or chemical
function in a biological network. To verify such claims we would like to investigate the
similarity between the labels generated by the algorithm and the exogenous labels. But
how should one do this, particularly if, as is common, the number of groups can be
different between the two labelings?

These comparison questions arise in fields outside of network science as well. How well
do demographics predict political affiliation, for example? Or how accurately do blood
tests predict clinical outcomes? In each of these cases, we are interested in quantifying
the similarity between an experimental labeling and a known "ground truth." Such com-
parisons are commonly made using the information theoretic measure known as mutual
information [34].

Mutual information is a measure of how easy it is to describe one labeling of a set
of objects if we already know another labeling. Specifically, it measures how much less
information it takes to communicate the first labeling if we know the second versus if
we do not. This approach has a number of appealing qualities. It is invariant under
permutations of the labels in either labeling, so that labelings do not have to be aligned
before comparison. It also generalizes gracefully to the case where the two labelings have
different numbers of distinct label values.

On the other hand, the mutual information in its most common form also has some
significant drawbacks and, in particular, it is known to be biased towards labelings with
a large number of distinct labels. Various proposals have been made for mitigating this
issue [44, 131, 145, 9, 101]. In this section we focus on the recently proposed reduced mutual
information [101], which improves on the standard measure by carefully accounting for
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subleading terms in the information that are normally neglected.
Any version of the mutual information is an approximation to the true information cost

of the labelings being compared. One computes the information cost by defining some
encoding scheme for labelings and then counting the number of bits needed to specify
a labeling within that encoding. In this section we highlight two common pitfalls that
occur when quantifying information cost in this way, which produce errors in opposite
directions. The first is the neglect of the cost of certain parts of the transmission process,
which thus underestimates the total transmission cost. The standard, unreduced mutual
information is an example: it does not include the cost to transmit the "contingency table"
that summarizes the relationship between the two labelings, causing it to underestimate—
sometimes drastically—the total information cost, particularly for labelings with many
groups.

The second pitfall, and the focus of this section, is the use of inefficient encoding
schemes, which result in overestimates of information cost. The reduced mutual infor-
mation, in its conventional form, suffers from this issue because it uses a relatively crude
encoding of the contingency table. In this section we offer an improved encoding that
gives better bounds on the value of the reduced mutual information, different enough
to change outcomes in some practical situations, as we demonstrate with a selection of
illustrative examples.

3.1.2 Conditional entropy and mutual information

To motivate our discussion, we first rederive the conventional mutual information using
the language of information transmission, before progressing to the reduced mutual
information and its variants.

3.1.2.1 Mutual information

Mutual information can be understood in terms of the amount of information required to
transmit a labeling from one person to another. As discussed in Appendix A.3, information
theory offers a variety of tools to quantify the inherent information content of objects or
the information required to transmit the outcomes of probabilistic events.

Suppose, first, that we want to transmit to a receiver a discrete quantity 𝑋, which can
take any one of a known finite set of 𝑁 values. For example, we could be transmitting the
outcome of a coin flip 𝑋 ∈ {heads, tails} or one possible labeling of a group of objects. If
we assign to each possible value of 𝑋 a unique binary string, we can convey any particular
value by transmitting the appropriate string. The minimum length of string that can

81



encode all 𝑁 values is
𝐻 =

⌈
log2 𝑁

⌉ ≃ log2 𝑁, (3.1)

where ⌈𝑥⌉ denotes the smallest integer not less than 𝑥. This tells us the number of bits of
information needed to transmit 𝑋.

Suppose now that 𝑋 is actually a labeling 𝑔 of a set of 𝑛 objects, with each object having
exactly one label and each label having the same 𝑞𝑔 possible values, which we represent
by integers in the range 1 . . . 𝑞𝑔. In the community detection context of Chapter 2, this role
is played by the vector b that contains the group assignment of each node. The generic
labeling 𝑔 then has 𝑁 = 𝑞𝑛𝑔 possible values and hence any labeling can be transmitted
using an amount of information

𝐻(𝑔) = log𝑁 = 𝑛 log 𝑞𝑔. (3.2)

This, however, is not necessarily the most efficient way to transmit such a labeling. In
particular, if different labels occur with different frequencies then a more efficient encoding
may be possible, resulting in a smaller information cost. The standard encoding has three
parts. First we transmit the number of groups 𝑞𝑔 in the labeling. The maximum possible
value of 𝑞𝑔 is 𝑛, so if we use a simple "flat" encoding as in Eq. (3.1), then transmitting any
particular value requires information 𝐻(𝑞𝑔) = log 𝑛. Next we transmit a vector 𝑛(𝑔) of 𝑞𝑔
integers 𝑛(𝑔)𝑟 equal to the number of objects having each label 𝑟. By definition, the 𝑛(𝑔)𝑟 sum
to 𝑛, and the number of ways to choose 𝑞𝑔 nonnegative integers that sum to 𝑛 is

(𝑛+𝑞𝑔−1
𝑞𝑔−1

)
,

so if we again use a flat encoding to transmit 𝑛(𝑔) the information cost will be

𝐻(𝑛(𝑔)|𝑞𝑔) = log
(
𝑛 + 𝑞𝑔 − 1
𝑞𝑔 − 1

)
. (3.3)

Finally, we transmit the labeling 𝑔 itself, choosing only from among those that have
the correct multiplicities 𝑛(𝑔)𝑟 of the labels. The number of such labelings is given by
the multinomial 𝑛!/∏𝑟 𝑛

(𝑔)
𝑟 ! and hence, choosing a flat encoding one more time, the

information cost is
𝐻(𝑔|𝑛(𝑔)) = log 𝑛!∏

𝑟 𝑛
(𝑔)
𝑟 !
. (3.4)

Putting everything together, the information cost, or entropy, to transmit the labeling is

𝐻(𝑔) = 𝐻(𝑞𝑔) + 𝐻(𝑛(𝑔)|𝑞𝑔) + 𝐻(𝑔|𝑛(𝑔))

= log 𝑛 + log
(
𝑛 + 𝑞𝑔 − 1
𝑞𝑔 − 1

)
+ log 𝑛!∏

𝑟 𝑛
(𝑔)
𝑟 !
. (3.5)
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This three-step scheme is not the only one that could be applied to this problem, but it
is a fairly efficient one in the common case of a small number of groups 𝑞𝑔 ≪ 𝑛 with
potentially unequal sizes, and it is the one on which the conventional definition of entropy
is based. Returning to the network context, we also note that this encoding is equivalent
to the prior 𝑃(b) used over possible group partitions in Eq. (1.47).

The conventional definition, however, ignores all but the last term and approximates
the entropy as

𝐻0(𝑔) = log 𝑛!∏
𝑟 𝑛

(𝑔)
𝑟 !

. (3.6)

In most cases this is a good approximation. The other terms are subleading contributions—
they grow more slowly with 𝑛 than the leading term—and in practice they are negligible
even for quite modest values of 𝑛. Commonly one also makes a further approximation,
applying Stirling’s formula to each of the factorials, which gives the Shannon form of
the entropy 𝐻0(𝑔) = −𝑛∑

𝑟 𝑝𝑟 log 𝑝𝑟 , where 𝑝𝑟 = 𝑛(𝑔)𝑟 /𝑛 is the probability that a randomly
chosen object has label 𝑟.

Now consider the corresponding encoding scheme for mutual information. Suppose
that we have two different labelings of the same set of objects, a candidate labeling 𝑐,
generated for instance by some sort of algorithm, and a ground-truth labeling 𝑔 which
represents the "true" labels. The mutual information 𝐼(𝑐;𝑔) between the two labelings is
defined as the amount of information that can be saved when transmitting the truth 𝑔

if the receiver already knows the candidate 𝑐. We can write this quantity as the total
information or entropy needed to transmit 𝑔 on its own, minus the conditional entropy,
the amount to transmit 𝑔 given prior knowledge of 𝑐:

𝐼(𝑐;𝑔) = 𝐻(𝑔) − 𝐻(𝑔|𝑐). (3.7)

For the first term, we use the three-part encoding scheme described above, Eq. (3.5).
For the second we use a similar multipart scheme, but one that now takes advantage
of the receiver’s knowledge of 𝑐. In this scheme we first communicate 𝑞𝑔 and 𝑛(𝑔) as
before, at the same information cost of 𝐻(𝑞𝑔) + 𝐻(𝑛(𝑔)|𝑞𝑔). Then we communicate a
contingency table 𝑛(𝑔𝑐), a matrix with elements 𝑛(𝑔𝑐)𝑟𝑠 that represent the number of objects
that simultaneously belong to group 𝑟 in the ground truth 𝑔 and group 𝑠 in the candidate
labeling 𝑐. Figure 3.1 shows an example of a contingency table for two labelings of the
nodes of a small network.

The elements of the contingency table are all non-negative integers and its row and
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Figure 3.1: A contingency table for two labelings (colors) of the nodes of a network, one
with three colors and one with two. The entries in the 3 × 2 contingency table 𝑛(𝑔𝑐) count
the number of nodes that have each pair of label values. The row and column sums 𝑛(𝑔)
and 𝑛(𝑐) then count the number of nodes with each label in the two labelings. Note that,
although we illustrate the contingency table with an application to a network, the table
itself is a function of the labelings only and is independent of the network structure.

column sums are equal to the multiplicities of the labels in 𝑔 and 𝑐 respectively:

𝑞𝑐∑
𝑠=1

𝑛(𝑔𝑐)𝑟𝑠 = 𝑛(𝑔)𝑟 ,
𝑞𝑔∑
𝑟=1

𝑛(𝑔𝑐)𝑟𝑠 = 𝑛(𝑐)𝑠 . (3.8)

Since the receiver already knows the values of 𝑛(𝑔) and 𝑛(𝑐) (the former because we just
transmitted it and the latter because they know 𝑐), only contingency tables with these row
and column sums need be considered. The information cost to transmit the contingency
table with a flat encoding is then equal to logΩ(𝑛(𝑔), 𝑛(𝑐)), whereΩ(𝑛(𝑔), 𝑛(𝑐)) is the number
of possible tables with the required row and column sums. There is no known general
expression for this number, but approximations exist that are good enough for practical
purposes [43, 14, 64].

Finally, after transmitting the contingency table, it remains to transmit the ground-
truth labeling itself. For this we need only consider those labelings consistent with the
contingency table and the known candidate labeling 𝑐. The number of such labelings is∏

𝑟 𝑛
(𝑐)
𝑟 !/∏𝑟𝑠 𝑛

(𝑔𝑐)
𝑟𝑠 !, so the information needed to uniquely identify one of them is

𝐻(𝑔|𝑐, 𝑛(𝑔𝑐)) = log
∏

𝑠 𝑛
(𝑐)
𝑠 !∏

𝑟𝑠 𝑛
(𝑔𝑐)
𝑟𝑠 !

. (3.9)
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Putting everything together, the total conditional information is then

𝐻(𝑔|𝑐) = 𝐻(𝑞𝑔) + 𝐻(𝑛(𝑔)|𝑞𝑔) + 𝐻(𝑛(𝑔𝑐)|𝑛(𝑔), 𝑛(𝑐)) + 𝐻(𝑔|𝑐, 𝑛(𝑔𝑐))

= log 𝑛 + log
(
𝑛 + 𝑞𝑔 − 1
𝑞𝑔 − 1

)
+ logΩ(𝑛(𝑔), 𝑛(𝑐)) + log

∏
𝑠 𝑛

(𝑐)
𝑠 !∏

𝑟𝑠 𝑛
(𝑔𝑐)
𝑟𝑠 !

. (3.10)

In typical applications the number of labelings compatible with the contingency table
is much smaller than the total number of labelings. Thus the amount of information
needed to transmit the ground truth using this encoding is typically substantially smaller
than Eq. (3.5). The difference—the amount saved—is the quantity we call the mutual
information:

𝐼(𝑐;𝑔) = 𝐻(𝑔) − 𝐻(𝑔|𝑐)
= 𝐻(𝑞𝑔) + 𝐻(𝑛(𝑔)|𝑞𝑔) + 𝐻(𝑔|𝑛(𝑔))

− [
𝐻(𝑞𝑔) + 𝐻(𝑛(𝑔)|𝑞𝑔) + 𝐻(𝑛(𝑔𝑐)|𝑛(𝑔), 𝑛(𝑐)) + 𝐻(𝑔|𝑐, 𝑛(𝑔𝑐))]

= 𝐻(𝑔|𝑛(𝑔)) − 𝐻(𝑔|𝑐, 𝑛(𝑔𝑐)) − 𝐻(𝑛(𝑔𝑐)|𝑛(𝑔), 𝑛(𝑐))

= log
𝑛!

∏
𝑟𝑠 𝑛

(𝑔𝑐)
𝑟𝑠 !∏

𝑟 𝑛
(𝑔)
𝑟 !

∏
𝑠 𝑛

(𝑐)
𝑠 !

− logΩ(𝑛(𝑔), 𝑛(𝑐)). (3.11)

Once again this encoding is not necessarily the most efficient one, but it works well in
practical situations and forms the basis for the conventional definition of mutual infor-
mation. And once again the conventional definition drops the subleading term, retaining
only the first term in (3.11):

𝐼0(𝑐;𝑔) = log
𝑛!

∏
𝑟𝑠 𝑛

(𝑔𝑐)
𝑟𝑠 !∏

𝑟 𝑛
(𝑔)
𝑟 !

∏
𝑠 𝑛

(𝑐)
𝑠 !
. (3.12)

Commonly one again also applies Stirling’s approximation, which leads to the familiar ex-
pression for the mutual information 𝐼0(𝑐;𝑔) = 𝑛

∑
𝑟𝑠 𝑝𝑟𝑠 log(𝑝𝑟𝑠/𝑝𝑟𝑝𝑠), where 𝑝𝑟𝑠 = 𝑛(𝑔𝑐)𝑟𝑠 /𝑛

is the joint probability that a randomly chosen object has label 𝑟 in the ground truth and
𝑠 in the candidate labeling.

Although the principles behind them are similar, an important practical difference
between Eq. (3.5) for the entropy and Eq. (3.11) for the mutual information is that the
subleading term in the mutual information is typically larger and can significantly affect
the overall value. It is the neglect of this term that produces the bias towards an excessive
number of groups in the conventional mutual information. The cure for this bias is to
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retain the subleading term, which leads to the measure known as the reduced mutual
information.

3.1.2.2 Reduced mutual information

Equation (3.12) defines the standard mutual information 𝐼0, which neglects subleading
behavior. In the limit of large 𝑛 this is a good approximation, but for finite 𝑛, including
values large enough to be of practical consequence, the subleading term can contribute
significantly. In this section, we demonstrate how this gives rise to a bias in favor of
labelings with larger numbers of groups and how simply retaining the subleading term
removes this bias.

The full expression in Eq. (3.11) is known as the reduced mutual information, with
this particular version (we will shortly consider others) distinguished by the fact that it
assumes a flat encoding when transmitting the contingency table. We will denote this
measure by 𝐼flat:

𝐼flat(𝑐;𝑔) = log
𝑛!

∏
𝑟𝑠 𝑛

(𝑔𝑐)
𝑟𝑠 !∏

𝑟 𝑛
(𝑔)
𝑟 !

∏
𝑠 𝑛

(𝑐)
𝑠 !

− logΩ(𝑛(𝑔), 𝑛(𝑐)). (3.13)

The moniker "reduced" derives from the fact that the − logΩ term is always negative and
so reduces the value of the mutual information relative to the conventional definition
of Eq. (3.12), but we emphasize that functionally we are simply retaining terms that are
usually neglected. As mentioned previously, there is no general closed-form expression
for the number Ω(𝑛(𝑔), 𝑛(𝑐)) of contingency tables with given row and column sums, and
its numerical computation is #P-hard and hence intractable for all but the smallest of
examples [47]. In practice, therefore, the value must be approximated. In this work we
make use of the "effective columns" approximation of [64], which has good performance
over a wide range of situations and a simple closed-form expression:

Ω(𝑛(𝑔), 𝑛(𝑐)) ≃
(
𝑛 + 𝑞𝑐𝛼 − 1
𝑞𝑐𝛼 − 1

)−1 𝑞𝑐∏
𝑠=1

(
𝑛(𝑐)𝑠 + 𝛼 − 1

𝛼 − 1

) 𝑞𝑔∏
𝑟=1

(
𝑛(𝑔)𝑟 + 𝑞𝑐 − 1

𝑞𝑐 − 1

)
, (3.14)

where

𝛼 =
𝑛2 − 𝑛 + (

𝑛2 − 𝑅)/𝑞𝑐
𝑅 − 𝑛 , 𝑅 =

∑
𝑟

(𝑛(𝑔)𝑟 )2. (3.15)

This estimate differs from the one originally used for the reduced mutual information
in [101], but we favor it here since it performs better in certain regimes.
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To appreciate the importance of the contingency table term in the mutual information,
consider the simple case where the candidate labeling 𝑐 places every object in its own
group: 𝑐 = (1, . . . , 𝑛). Regardless of the ground-truth labeling 𝑔, this choice of 𝑐 clearly
contains no information about the truth, so we expect the mutual information to be zero.
But it is not. We have 𝑛(𝑐)𝑠 ! = 1 for all 𝑠 in this case, while the contingency table has a
single 1 in each column and all other elements are 0, so 𝑛(𝑔𝑐)𝑟𝑠 ! = 1 for all 𝑟, 𝑠, and hence the
conventional mutual information of Eq. (3.12) simplifies to

𝐼0(𝑐;𝑔) = log 𝑛!∏
𝑟 𝑛

(𝑔)
𝑟 !

= 𝐻0(𝑔). (3.16)

This answer is as wrong as it possibly could be: we expect the mutual information to
take the minimum value of zero, but instead it is equal to the entropy 𝐻0(𝑔), which is
its maximum possible value, since the largest amount of information we can save by
knowing 𝑐 when we transmit 𝑔 is equal to the entire information 𝐻0(𝑔). In other words,
the conventional mutual information would have us believe that this candidate labeling
which puts every object in its own group tells us everything there is to know about the
true labeling 𝑔, when in fact it tells us nothing at all.

The reason for this failure is that the contingency table itself uniquely determines 𝑔 in
this case, so neglecting the information content of the table puts the mutual information
in error by an amount equal to the complete information cost of the ground truth. If we
include the cost of transmitting the contingency table, this erroneous behavior disappears.
We can calculate the number Ω(𝑛(𝑔), 𝑛(𝑐)) of contingency tables exactly for this example.
Since there is just a single 1 in every column of the table, the number of tables is

Ω(𝑛(𝑔), 𝑛(𝑐)) = 𝑛!∏
𝑟 𝑛

(𝑔)
𝑟 !
, (3.17)

and the reduced mutual information is

𝐼flat(𝑐;𝑔) = 𝐼0(𝑐;𝑔) − log 𝑛!∏
𝑟 𝑛

(𝑔)
𝑟 !

= 0, (3.18)

which is now the correct answer.

3.1.2.3 Improved encodings

The reduced mutual information offers a significant improvement over the traditional
measure for finite-sized systems, particularly when the candidate labeling has a large
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number of distinct label values. And, as we have seen, it gives exactly the correct answer in
the case where every object is in a group of its own. In this section, however, we argue that
the reduced mutual information, as it is usually defined, is itself an imperfect measure, and
in particular that it overcorrects for the flaws of traditional mutual information because the
encoding scheme used for both𝐻(𝑔) and𝐻(𝑔|𝑐) is inefficient and does not approximate the
entropy as well as it could. All calculated entropies are merely upper bounds on the true
value: calculating the information cost of transmitting a labeling using a specific encoding
guarantees that no more than that amount of information is needed, but it is possible that
a better encoding exists that can do the job with less. In this section, we propose more
efficient encodings that give better bounds on the entropy and the conditional entropy,
particularly in the common case where the two partitions 𝑐 and 𝑔 are similar.

The central observation behind our proposed encodings is that quantities like 𝑛(𝑔)

and 𝑛(𝑔𝑐) often have unevenly distributed elements, sometimes strongly so. For example,
mutual information is most often used to compare labelings that are quite similar, which
means the elements of the contingency table are very non-uniform—those that correspond
to common pairs of labels are large, while all the others are small. This in turn means
that choices of the contingency table with these properties are much more likely to occur
than others and hence that a "flat" encoding that assumes all choices to be equally likely is
inefficient. By using an encoding that allows for a non-uniform distribution, we can save
a substantial amount of information and achieve a better approximation of the mutual
information.

The encodings we propose are based on the Dirichlet-multinomial distribution that had
appeared in the microcanonical form of models in Chapter 2. This distribution is central
to our current analysis, and so we consider its properties here in further detail. The
symmetric Dirichlet-multinomial (DM) distribution is a standard, one-parameter family
of discrete distributions over 𝑞-vectors 𝑋 of non-negative integer elements that sum to a
given total 𝑁 . The distribution is derived from a two-part generative process in which,
first, a set of 𝑞 probabilities 𝑝1 . . . 𝑝𝑞 are drawn from a symmetric Dirchlet distribution
with concentration parameter 𝛼 > 0, and then a set of 𝑞 integers 𝑋1 . . . 𝑋𝑞 are drawn from
a multinomial distribution with those probability parameters. The resulting distribution
over 𝑋 is given by

𝑃(𝑋|𝑁, 𝑞, 𝛼) =
∫

Γ(𝑞𝛼)
𝑞∏
𝑟=1

𝑝𝛼−1
𝑟

Γ(𝛼)︸            ︷︷            ︸
Dirichlet

𝑁 !
𝑞∏
𝑟=1

𝑝𝑋𝑟𝑟
𝑋𝑟 !︸       ︷︷       ︸

Multinomial

dp, (3.19)
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where the integral is over the simplex of non-negative values 𝑝𝑟 such that
∑
𝑟 𝑝𝑟 = 1.

Performing the integral then gives the standard expression for the Dirichlet-multinomial
distribution:

𝑃(𝑋|𝑁, 𝑞, 𝛼) =
(
𝑁 + 𝑞𝛼 − 1
𝑞𝛼 − 1

)−1 𝑞∏
𝑟=1

(
𝑋𝑟 + 𝛼 − 1

𝛼 − 1

)
. (3.20)

If 𝛼 = 1, the Dirichlet-multinomial distribution is uniform over all 𝑞-vectors 𝑋 of
non-negative integers that sum to 𝑁 :

𝑃(𝑋|𝑁, 𝑞, 𝛼 = 1) =
(
𝑁 + 𝑞 − 1
𝑞 − 1

)−1
. (3.21)

Smaller values 0 ≤ 𝛼 < 1 produce a distribution biased towards more heterogeneous 𝑋.
In the extreme limit where 𝛼 → 0 (which we will denote as 𝛼 = 0) the distribution is
supported only on vectors that have a single nonzero entry equal to 𝑁 :

𝑃(𝑋|𝑁, 𝑞, 𝛼 = 0) =
{

1/𝑞 if 𝑋 has one nonzero entry,
0 otherwise.

(3.22)

Conversely, for 𝛼 > 1 the Dirichlet-multinomial distribution favors vectors 𝑋 with more
uniform entries, and in the limit 𝛼 → ∞ it approaches the symmetric multinomial distri-
bution where 𝑝𝑟 = 1/𝑞 for all 𝑟:

𝑃(𝑋|𝑁, 𝑞, 𝛼 → ∞) = 𝑁 !∏𝑞
𝑟=1 𝑋𝑟 !

(1/𝑞)𝑁 . (3.23)

Different choices of the parameter 𝛼 thus place more or less weight on different types of
vectors 𝑋.

We can use the Dirichlet-multinomial distribution to improve the encoding of the group
sizes 𝑛(𝑔) and so better approximate the total unconditional information cost 𝐻(𝑔). The
information cost used in the definition of the standard reduced mutual information is

𝐻flat(𝑔) = 𝐻(𝑞𝑔) + 𝐻(𝑛(𝑔)|𝑞𝑔) + 𝐻(𝑔|𝑛(𝑔)), (3.24)

where as previously the subscript "flat" indicates the flat encoding that assumes equal
probability for all outcomes at each step. In the new approach we propose here, we still
use flat encodings for 𝑞𝑔 and𝑔 but we use a nonuniform Dirichlet-multinomial distribution
for the group sizes 𝑛(𝑔).
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Generally when transmitting a sequence of 𝑛 values with unequal probabilities such
that value 𝑟 occurs 𝑛𝑟 times, the information cost is given by Eq. (3.4):

log 𝑛!∏
𝑟 𝑛𝑟 !

≃ 𝑛 log 𝑛 − 𝑛 −
∑
𝑟

(𝑛𝑟 log 𝑛𝑟 − 𝑛𝑟)

= −
∑
𝑟

𝑛𝑟 log 𝑝𝑟 , (3.25)

where 𝑝𝑟 = 𝑛𝑟/𝑛 is the probability of value 𝑟 and the factorials are approximated using
Stirling’s formula. Equation 3.25 tells us that the information cost to transmit the value 𝑟
is simply − log 𝑝𝑟 . Applying this observation to the Dirichlet-multinomial distribution we
can calculate the total information cost to transmit a vector 𝑛(𝑔) drawn from the Dirichlet-
multinomial distribution with concentration parameter 𝛼𝑔:

𝐻(𝑛(𝑔)|𝑞𝑔 , 𝛼𝑔) = − log𝑃(𝑛(𝑔)|𝑞𝑔 , 𝛼𝑔)

= log
(
𝑛 + 𝑞𝑔𝛼𝑔 − 1
𝑞𝑔𝛼𝑔 − 1

)
−

𝑞𝑔∑
𝑟=1

log
(
𝑛(𝑔)𝑟 + 𝛼𝑔 − 1

𝛼𝑔 − 1

)
. (3.26)

The optimal encoding for transmitting 𝑛(𝑔) within the Dirichlet-multinomial family is
given by the minimum of this expression with respect to 𝛼𝑔, which is also equivalent
to simply maximizing 𝑃(𝑛(𝑔)|𝛼𝑔), i.e., to finding the maximum-likelihood value of 𝛼𝑔. In
practice we can find the maximum-likelihood value with standard numerical optimization
techniques, as described in Appendix C.15.

We apply this procedure to a selection of example values of 𝑛(𝑔) in Fig. 3.2, giving the
optimal values of 𝛼𝑔 for each one, along with the resulting values for the entropy. In
each case, as we can see, the Dirichlet-multinomial encoding is more efficient than the
conventional flat encoding, sometimes by a wide margin. In the extreme case where 𝑛(𝑔)

has only a single nonzero entry, the optimal value of 𝛼𝑔 is zero and the information cost is

𝐻(𝑛(𝑔)|𝑞𝑔 , 𝛼𝑔 = 0) = log 𝑞𝑔 , (3.27)

whereas the cost to transmit the same 𝑛(𝑔) using a flat encoding (equivalent to 𝛼𝑔 = 1) is
considerably steeper:

𝐻(𝑛(𝑔)|𝑞𝑔 , 𝛼𝑔 = 1) = log
(
𝑛 + 𝑞𝑔 − 1
𝑞𝑔 − 1

)
≃ 𝑞𝑔 log 𝑛. (3.28)

One could argue that to truly make a fair comparison, one should also include the cost
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Figure 3.2: Optimal values of 𝛼𝑔 for the transmission of the community sizes 𝑛(𝑔), along
with the resulting information cost in bits 𝐻DM(𝑛(𝑔)) in our new Dirichlet-multinomial
encoding scheme and the corresponding cost 𝐻flat(𝑛(𝑔)) in the old, flat encoding. Note
how vectors with more extreme values benefit from smaller values of 𝛼𝑔, while more
uniform vectors favor larger 𝛼𝑔.

to transmit the value of 𝛼𝑔 itself. As shown in Appendix C.15, however, this cost is small in
practice, and moreover cancels completely from the final value of the mutual information,
so it is normally safe to ignore it, as we do here.

Although the information saved by using the Dirichlet-multinomial distribution is in
some cases a significant fraction of the information needed to transmit 𝑛(𝑔), it is normally
quite small next to the information needed to transmit the entire labeling, which is dom-
inated by the cost 𝐻(𝑔|𝑛(𝑔)) of sending the labeling itself. The same is not true, however,
when we turn to the conditional entropy 𝐻(𝑔|𝑐), where using the Dirichlet-multinomial
distribution can result in large efficiency gains, and this is our primary motivation for
taking this approach.

Recall that the standard model for the conditional information breaks the transmission
process into four steps—transmission of 𝑞𝑔, 𝑛(𝑔), 𝑛(𝑔𝑐), and 𝑔—which can be represented
by the equation

𝐻flat(𝑔|𝑐) = 𝐻(𝑞𝑔) + 𝐻(𝑛(𝑔)|𝑞𝑔) + 𝐻(𝑛(𝑔𝑐)|𝑛(𝑔), 𝑛(𝑐)) + 𝐻(𝑔|𝑐, 𝑛(𝑔𝑐)), (3.29)

with a flat encoding at each step. In our alternate proposal, we again transmit 𝑞𝑔 using a flat
encoding, but then combine the second and third steps to transmit the contingency table
all at once, given 𝑞𝑔 and 𝑛(𝑐). This transmission again leverages a nonuniform encoding to
achieve efficiency gains. The final step of transmitting 𝑔 itself remains unchanged.

Our process for transmitting the contingency table involves transmitting one column at
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a time using the Dirichlet-multinomial distribution. We use the same value 𝛼𝑔|𝑐 for each
column, but the columns are otherwise independent. If we denote column 𝑠 by 𝑛(𝑔𝑐)·𝑠 , then
the information cost of this procedure can be written

𝐻(𝑛(𝑔𝑐)|𝑛(𝑐), 𝑞𝑔 , 𝛼𝑔|𝑐) =
𝑞𝑐∑
𝑠=1

𝐻(𝑛(𝑔𝑐)·𝑠 |𝑛(𝑐)𝑠 , 𝑞𝑔 , 𝛼𝑔|𝑐)

=
𝑞𝑐∑
𝑠=1

[
log

(
𝑛(𝑐)𝑠 + 𝑞𝑔𝛼𝑔|𝑐 − 1

𝑞𝑔𝛼𝑔|𝑐 − 1

)
−

𝑞𝑔∑
𝑟=1

log
(
𝑛(𝑔𝑐)𝑟𝑠 + 𝛼𝑔|𝑐 − 1

𝛼𝑔|𝑐 − 1

)]
. (3.30)

For instance, consider the special case of perfect recovery where 𝑐 = 𝑔, so that 𝑛(𝑔𝑐)

is a diagonal matrix and each column 𝑛(𝑔𝑐)·𝑠 has only a single nonzero entry. Then, as in
Eq. (3.27), 𝛼𝑔|𝑐 = 0 is the optimal choice for transmitting the contingency table and the
total information cost is simply

𝐻(𝑛(𝑔𝑔)|𝑛(𝑔), 𝛼𝑔|𝑐 = 0) =
𝑞𝑔∑
𝑟=1

𝐻(𝑛(𝑔𝑔).𝑟 |𝑛(𝑔)𝑟 , 𝛼𝑔|𝑐 = 0) =
𝑞𝑔∑
𝑟=1

log 𝑞𝑔 = 𝑞𝑔 log 𝑞𝑔. (3.31)

In the traditional flat encoding the cost is much greater:

𝐻(𝑛(𝑔𝑔)|𝑛(𝑔)) = 𝐻(𝑛(𝑔)|𝑛, 𝑞𝑔) + 𝐻(𝑛(𝑔𝑐)|𝑛(𝑐), 𝑛(𝑔)) = log
(
𝑛 − 1
𝑞𝑔 − 1

)
+ logΩ(𝑛(𝑐), 𝑛(𝑞))

= O(𝑞𝑔𝑞𝑐 log 𝑛). (3.32)

This significant improvement also extends to the case where 𝑐 ≃ 𝑔 and the labelings are
similar but not identical. It is in precisely this regime that mutual information is often
applied to quantify similarity, so the new encoding is much preferred over the old one in
common settings, a conclusion strongly confirmed by the example applications given in
Section 3.1.3.

Figure 3.3 shows the equivalent of Fig. 3.2 for the transmission of a selection of example
contingency tables. In the case where the candidate labeling places all objects in a single
group, so that 𝑞𝑐 = 1, our proposed scheme is exactly analogous to our method for
transmitting the vector 𝑛(𝑔), which implies that the mutual information is 𝐼DM(𝑐;𝑔) = 0
(the DM denoting "Dirichlet-multinomial"). This is a desirable property which is also
shared by the traditional and reduced mutual informations—a candidate labeling that
places all objects in a single group tells us nothing about the ground truth 𝑔. We also
note the considerable gulf in efficiency between the two encodings for the case of identical
labelings 𝑔 = 𝑐, the second column in Fig. 3.3, while for labelings that are dissimilar (the

92



� �
=

1
�
=

�
� �

=
� �

� �
>

� �

�
(�)

�
(�
�)�
�|�

�
(�)

�
(�
�)

�

�
(�
)

N
M

I D
M
(�;

�)
Th

is
pa

pe
r

N
M

I fl
at
(�;

�)
Fl

at
re

du
ct

io
n

�
�|�

�
D

M
(�

(�
�) |
�
(�)
)

�
fla

t(�
(�
�) |
�
(�)
)

1.
73

0
0.

37
0.

20
17

.9
1

11
.6

1
44

.7
4

56
.5

8
17

.9
1

11
.6

1
44

.7
4

56
.5

8

18
.2

6
44

.2
5

46
.3

2
62

.5
3

Fi
gu

re
3.

3:
C

om
pa

ris
on

of
th

e
in

fo
rm

at
io

n
co

st
of

tr
an

sm
itt

in
g

ex
am

pl
e

co
nt

in
ge

nc
y

ta
bl

es
un

de
rt

he
ol

d
an

d
ne

w
en

co
di

ng
s.

Th
e

to
p

ha
lf

of
th

e
fig

ur
e

sh
ow

st
he

ne
w

en
co

di
ng

,a
lo

ng
w

ith
th

e
va

lu
es

fo
rt

he
op

tim
al

D
iri

ch
le

t-m
ul

tin
om

ia
l

pa
ra

m
et

er
𝛼
𝑔
|𝑐

an
d

th
e

re
su

lti
ng

in
fo

rm
at

io
n

co
st
𝐻

D
M
(𝑛

(𝑔𝑐
) |𝑛

(𝑐)
).

Th
e

bo
tto

m
ha

lf
sh

ow
st

he
ol

d
en

co
di

ng
an

d
as

so
ci

at
ed

in
fo

rm
at

io
n

co
st
𝐻

fla
t(𝑛

(𝑔𝑐
) |𝑛

(𝑐)
).

Th
e

ne
w

en
co

di
ng

is
m

or
e

effi
ci

en
ti

n
ev

er
y

ca
se

,a
nd

es
pe

ci
al

ly
so

in
th

e
ca

se
of

eq
ua

l
la

be
lin

gs
𝑐
=
𝑔
.

93



final two columns of the figure), the gains of the new encoding are more modest, as we
would expect.

Employing our new encoding in the calculation of the conditional information, we now
obtain a revised information cost of

𝐻DM(𝑔|𝑐) = 𝐻(𝑞𝑔) + 𝐻(𝑛(𝑔𝑐)|𝑛(𝑐), 𝑞𝑔 , 𝛼𝑔|𝑐) + 𝐻(𝑔|𝑐, 𝑛(𝑔𝑐)). (3.33)

(Once again one could arguably also include the fixed cost of transmitting the value of 𝛼𝑔|𝑐 ,
but in practice this cost is small and moreover cancels from the final value of the mutual
information—see Appendix C.15.)

Putting everything together, we then arrive at our improved mutual information mea-
sure

𝐼DM(𝑐;𝑔) = 𝐻DM(𝑔) − 𝐻DM(𝑔|𝑐)
= 𝐼0(𝑐;𝑔) + 𝐻(𝑛(𝑔)|𝑞𝑔 , 𝛼𝑔) − 𝐻(𝑛(𝑔𝑐)|𝑛(𝑐), 𝑞𝑔 , 𝛼𝑔|𝑐)

= 𝐼0(𝑐;𝑔) + log
(
𝑛 + 𝑞𝑔𝛼𝑔 − 1
𝑞𝑔𝛼𝑔 − 1

)
−

𝑞𝑔∑
𝑟=1

log
(
𝑛(𝑔)𝑟 + 𝛼𝑔 − 1

𝛼𝑔 − 1

)

−
𝑞𝑐∑
𝑠=1

log
(
𝑛(𝑐)𝑠 + 𝑞𝑔𝛼𝑔|𝑐 − 1

𝑞𝑔𝛼𝑔|𝑐 − 1

)
+

𝑞𝑔∑
𝑟=1

𝑞𝑐∑
𝑠=1

log
(
𝑛(𝑔𝑐)𝑟𝑠 + 𝛼𝑔|𝑐 − 1

𝛼𝑔|𝑐 + 1

)
. (3.34)

Besides giving an improved estimate of the mutual information, this formulation has
a number of additional advantages over the standard reduced mutual information.
The closed-form expression means that approximations like those used for the num-
ber Ω(𝑛(𝑔), 𝑛(𝑐)) of contingency tables in Eq. (3.14) are unnecessary—the measure can be
calculated exactly without approximation. Another advantage is that it is possible to
prove that 𝐼DM(𝑐;𝑔) ≤ 𝐼DM(𝑔;𝑔) for all 𝑐, with the exact equality holding only when 𝑐

and 𝑔 are identical up to a permutation of labels, an intuitive result that is required for
proper normalization, but which has not been shown for the standard reduced mutual
information. We give the proof in Appendix C.13.

This being said, the encoding we use is not necessarily the last word in calculation of
the mutual information. As discussed at the start of this section, all entropy calculations
only give bounds on the true value and it is possible that another encoding exists that
gives a better bound. One could imagine trying an approach analogous to that used for
the standard reduced mutual information and constraining not only the column sums of
the contingency table but also the row sums, while still using a nonuniform distribution
over tables subject to these constraints. Placing more constraints on the contingency table
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should reduce the number of tables we need to consider and hence save on transmission
costs. This approach, however, turns out to offer little benefit in practical situations
because the gains must be offset against the information needed to transmit the row sums.
It transpires that, in the common case where the candidate and ground-truth labelings are
similar to one another, the possible values of the row sums are already tightly restricted,
even without placing any explicit constraint on them, so that imposing such a constraint
saves little information, while the cost of transmitting the row sums is considerable. In
most cases, therefore, this approach is less efficient than the one we propose.

Equation 3.34 does still have some shortcomings. For one thing, it is not fully analytic,
since the values of the parameters 𝛼𝑔 and 𝛼𝑔|𝑐 must be found by numerical optimization
(see Appendix C.15). Also, because of the asymmetric encoding used to capture the
contingency table, in which rows and columns are treated differently, the measure is not
symmetric under interchange of 𝑐 and 𝑔. For typical applications where one is comparing
candidate labelings against a single ground truth this does not matter greatly, since the
problem is already inherently asymmetric, but there may be cases where a symmetric
measure would be preferred. Lastly, the encoding we propose is not guaranteed to always
perform better than the standard (flat) reduced information. In particular, if the labelings 𝑐
and 𝑔 are truly drawn from the distribution corresponding to the flat encoding scheme,
then by definition the flat mutual information will give an optimal encoding and our
method cannot do better. Our broader claim, however, is that in the realistic regime of
labelings that have a significant degree of similarity, our new encoding can be expected to
perform better than the flat encoding.

3.1.2.4 Normalized mutual information

So far we have defined various measures of absolute information content, as quantified in
bits for example, but such absolute measures can be difficult to interpret. Are 20 bits of
mutual information a little or a lot? To make sense of the results, they are often expressed in
terms of a normalized mutual information (NMI) that represents the information content
as a fraction of its maximum possible value [36]. There are various ways to perform the
normalization [88]. Here we use the form

NMI(𝑐;𝑔) = 𝐼(𝑐;𝑔)
𝐼(𝑔;𝑔) . (3.35)

Note that this expression is asymmetric in 𝑐 and 𝑔—the value is not invariant under their
interchange. Other normalized mutual information measures use a symmetric denomina-
tor, such as 1

2[𝐼(𝑔;𝑔)+ 𝐼(𝑐; 𝑐)] [36, 88], giving a normalized measure that is itself symmetric.
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In Section 3.2 and [66] we discuss how these symmetric normalizations introduce bias
to the mutual information, and so we will prefer the asymmetric normalization in this
analysis.

We can define a normalized mutual information of the form (3.35) for any of the mutual
information measures discussed in this chapter, including the Dirichlet-multinomial mea-
sure. All of the resulting versions of NMI have the desirable properties of being 1 when
𝑐 = 𝑔 and zero when the mutual information is zero. Thus NMI values approaching 1
generally indicate similar labelings and values near zero indicate dissimilar ones, making
this an intuitive measure of similarity. It is also possible for the NMI to become (slightly)
negative for the reduced mutual information measures we consider [101]. (This cannot
happen with the traditional unreduced mutual information.) A negative value indicates
that the encoding scheme that makes use of 𝑐 when transmitting 𝑔 is actually less efficient
than simply transmitting 𝑔 alone. This, however, happens only when 𝑐 and 𝑔 are very
dissimilar and hence rarely occurs in practical situations (where we are usually concerned
with candidates 𝑐 that are similar to the ground truth).

For the particular case of the Dirichlet-multinomial mutual information, the NMI has
the additional desirable property that it takes the value 1 if and only if 𝑐 and 𝑔 are identical
up to a permutation of labels, while for all other 𝑐 it is less than 1—see Appendix C.13.
This follows directly from the inequality 𝐼DM(𝑐;𝑔) ≤ 𝐼DM(𝑔;𝑔) mentioned above. The same
is not true of the conventional unreduced NMI, defined as in Eq. (3.35), which can be 1
even for very dissimilar labelings (see Section 3.1.2.2). It is potentially true, but currently
unproven, for the flat reduced mutual information.

3.1.3 Example applications

In this section we give a selection of example applications of our proposed measure,
demonstrating that it can give significantly different answers from previous measures—
different enough to affect scientific conclusions under real-world conditions.

3.1.3.1 Comparison of the proposed measure and the standard reduced mutual infor-
mation

In some circumstances the results returned by the measure proposed in this section can
diverge significantly from those given by either the non-reduced mutual information or
the standard ("flat") version of the reduced mutual information. We have already seen
examples for the non-reduced measure: cases in which the candidate labeling 𝑐 has many
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more labels than the ground truth can cause the unreduced measure to badly under-
estimate the true information cost, sometimes maximally so—see Section 3.1.2.2.

A simple example illustrating the difference between the Dirichlet-multinomial and
flat versions of the reduced mutual information is shown in Fig. 3.4. In this example
a set of objects, represented by the dots in the figure, are split into three equally sized
ground-truth groups. The candidate labeling 𝑐 respects this division but further splits
each of the three groups into three subgroups, also of equal size. This is a special case
of the situation mentioned above in which the candidate division has more labels than
the ground truth, so it comes as no surprise that the conventional, unreduced mutual
information overestimates similarity in this case—indeed it returns the maximal value
of 1.

To understand the behavior of our two reduced mutual information measures we
consider three special cases. In the first, shown in the left column of Fig. 3.4, each of
the subgroups, labeled A to I, has size 1, meaning that every group in 𝑐 has only a single
object in it. We discussed this case previously in Section 3.1.2.2 and argued that the correct
mutual information should be zero. As the figure shows, both versions of the reduced
mutual information give this correct result, while the unreduced measure is maximally
incorrect.

Next, consider the right column of Fig. 3.4, which shows what happens as the total
number of objects tends to infinity and the size of the subgroups A to I diverges. Asymp-
totically, the candidate 𝑐 now gives full information about the ground truth—𝑔 is fully
specified when both 𝑐 and the contingency table are known, but the information cost
of transmitting the contingency table is a vanishing fraction of the total. Thus the NMI
should be 1 in this case, and again both versions of the reduced mutual information give
the right answer. (In this limit the unreduced measure also gives the right answer.)

But now consider the middle column of the figure, in which subgroups A to I have
size 3. In this case the contingency table, as shown in the figure, is highly non-uniform,
and hence is transmitted much more efficiently by the Dirichlet-multinomial encoding
than by the flat encoding. This produces a substantial difference between the values
of the two reduced mutual information measures. The Dirichlet-multinomial measure
gives a relatively high value of 0.75, indicating a strong similarity between candidate and
ground truth, while the standard flat measure gives a significantly smaller value, less
than 0.5. This is a case where the standard measure has penalized the mutual information
too heavily by overestimating the information content of the contingency table, thereby
giving a misleading impression that the two labelings are more dissimilar than in fact
they are.
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Figure 3.5: Comparison of the two normalized reduced mutual information measures
considered here for the example system in Fig. 3.4, for various sizes 𝑛(𝑐)𝑟 of the subgroups
as denoted by the labels. In all cases except 𝑛(𝑐)𝑟 = 1 and ∞ the flat reduced mutual
information NMIflat returns a lower value than the Dirichlet-multinomial reduced
mutual information NMIDM because it overestimates the information cost of the
contingency table.

Figure 3.5 shows a plot of the difference between the two reduced measures for this
example system with subgroup sizes 𝑛(𝑐)𝑟 ranging all the way from 1 to ∞. Across the
entire range we observe that, apart from the limiting values of 𝑛(𝑐)𝑟 = 1 and ∞, the flat
reduced mutual information consistently gives underestimates relative to the Dirichlet-
multinomial measure.

Figure 3.6 shows a different aspect of the two reduced measures. In this example the
ground-truth labeling divides a set of 19 objects into four groups of varying sizes, and we
compare outcomes for two proposed candidate labelings, denoted 𝑐1 and 𝑐2. Labeling 𝑐1

has identified the four groups correctly but splits one of them into a further four subgroups.
As we would expect, the conventional unreduced NMI awards this labeling a maximal
score of 1, which is clearly incorrect. Both reduced measures correctly give a value less
than 1, although the values are somewhat different.

Now consider candidate labeling 𝑐2, which erroneously amalgamates the second
ground-truth group with part of the first as shown. Most observers would probably
say that this labeling is worse than 𝑐1, but that is not what the standard reduced mutual
information reports: the standard measure favors 𝑐2 over 𝑐1 by a substantial margin. On
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Figure 3.6: Two candidate labelings of the same set of objects. In this figure, 19 objects
are divided among four ground-truth groups, represented by the horizontal stripes of
red, green, blue, and magenta, and two candidate labelings 𝑐1 and 𝑐2 are denoted by the
boxes labeled A to G. The Dirichlet-multinomial measure of this section favors the left
labeling 𝑐1 while the flat reduced mutual information prefers the right one 𝑐2.

the other hand, the Dirichlet-multinomial measure of this section correctly favors 𝑐1, by a
similar margin.

3.1.3.2 Network community detection

The examples of the previous section are illustrative but anecdotal. To shed more sys-
tematic light on the performance of the new measure we apply it to the outcomes of a
large set of network community detection calculations. In these tests we use the popu-
lar Lancichinetti-Fortunato-Radicchi (LFR) graph model [77] to generate 100 000 random
networks with known community structure and realistic distributions of node degrees
and group sizes. Then we use six different popular community detection algorithms to
generate candidate divisions of these networks, which we compare to the known structure
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Figure 3.7: Fractional reduction in information cost when transmitting the group
sizes 𝑛(𝑔) under the Dirichlet-multinomial encoding versus the flat encoding. The
horizontal axis is linear from 0 to 0.01 and logarithmic above 0.01. The bar chart is a
simple histogram of the relative frequencies, while the curve shows the same results
smoothed using a quartic kernel density estimator with the same bin width.

using both the conventional reduced mutual information and the measure proposed here.
Further details on the LFR network generation process are given in Appendix C.16.4, and
the community detection methods are described in Appendix C.16.2.

As discussed in Section 3.1.2.3, our Dirichlet-multinomial approach improves the effi-
ciency of information transmission in two places: in the transmission of the group sizes 𝑛(𝑔)

and the transmission of the contingency table 𝑛(𝑔𝑐). Figure 3.7 shows the fractional im-
provement in information cost for the group sizes for each of our test networks. The gains
vary substantially between networks, and some are close to zero, but in a large fraction of
cases they reach 10% or more.

More important, however, are the gains in transmission of the contingency table. Since
the contingency table depends on the candidate 𝑐 as well as the ground truth, these
gains also depend on the candidate and hence vary between the six different community
detection algorithms, but for our purposes here we aggregate the results over algorithms.
Figure 3.8a shows the distribution of the resulting fractional information savings for all
networks in a single plot. The different curves in the plot show how the distribution varies
as a function of how similar the ground-truth and candidate divisions are, measured
using the Dirichlet-multinomial NMI.

Based on these results we observe that when 𝑐 and 𝑔 are similar (NMI > 0.8, brown
curve in the figure) the information gains when transmitting the contingency table are

101



large, up to a factor of ten or more. This aligns with our observation, discussed in
Appendix C.13, that for 𝑐 ≃ 𝑔 the new encoding scheme is near-optimal, while the flat
scheme is very inefficient. Even in cases where 𝑐 and 𝑔 are less similar, efficiency gains are
often significant, typically above 10% and as high as 100% or more. There are a handful
of cases, all occurring when the candidate labeling and ground truth are very dissimilar
(NMI < 0.2, blue in the figure), where the new encoding performs slightly worse than
the standard one, as discussed in Section 3.1.2.3. However, given that mutual information
measures are normally applied in cases where the two labelings are significantly similar,
the evidence of Fig. 3.8 suggests that our new encoding should be preferred, often by a
wide margin, in most practical community detection scenarios.

As a result of the changes in both 𝐻(𝑔) and 𝐻(𝑔|𝑐), the value of the mutual information
itself can also change significantly. Figure 3.8b shows the fractional change in the mutual
information in our test set, with the different curves again showing the results for different
ranges of similarity between the ground truth and the candidate division. Because the
standard encoding usually overestimates the conditional information 𝐻(𝑔|𝑐), it tends
to underestimate the mutual information 𝐼(𝑐;𝑔) = 𝐻(𝑔) − 𝐻(𝑔|𝑐), although this bias is
offset somewhat by the corresponding overestimate of the unconditional entropy 𝐻(𝑔).
On balance, however, the standard encoding significantly underestimates the mutual
information in many cases and there are substantial information savings to be had under
the new encoding, with the mutual information changing by up to 20% or more in the
common case where the two labelings are similar (NMI > 0.8, brown curve in the figure).

3.1.4 Conclusions

In this section we have presented an improved formulation of the mutual information
between two labelings of the same set of objects. Our approach is in the spirit of the recently
proposed reduced mutual information, and like that measure it addresses the bias towards
an excessive number of groups present in traditional measures by taking full account
of information costs including particularly the cost of the contingency table. Where
our proposal differs from the standard reduced mutual information is in using a more
efficient encoding for the contingency table. While all information theoretic measures are,
in a sense, merely bounds on the true value, our formulation gives significantly tighter
bounds in the common regime where the two labelings are similar to one another.

We have demonstrated our proposed measure with a number of examples and per-
formed extensive tests on network community structures generated using the LFR bench-
mark model. In the latter context we find that the new encoding does produce considerable
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Figure 3.8: (a) Fractional change in the information cost of transmitting the contingency
table 𝑛(𝑔𝑐) using the Dirichlet-multinomial encoding compared to the flat encoding. The
different curves show the distribution of values for different ranges of similarity between
the ground-truth and candidate labelings, as measured by the (Dirichlet-multinomial)
normalized mutual information. The horizontal scale is linear between −0.1 and 0.1 and
logarithmic outside that range. (b) Fractional change in the mutual information from the
improved encoding of the contingency table and group sizes. The horizontal axis is
linear across the entire range and the different curves again indicate distributions for
different ranges of normalized mutual information. Cases where both mutual
informations give a result of 0, for example when 𝑞𝑐 = 1, have been removed, since they
yield a fractional change of 0/0.
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savings in information cost and the resulting values for the mutual information differ from
the standard reduced mutual information by up to 20% of the total value under commonly
occurring conditions.

Looking ahead, the improved encoding we present for contingency tables could also
be used in applications beyond the computation of the mutual information that is the
focus of this chapter. In general, the Dirichlet-multinomial distribution that underlies our
encoding provides a more informative prior than the standard uniform distribution for
Bayesian analysis involving contingency tables [59]. The encoding presented here could
thus be used to improve data compression performance of any model that requires the
specification of a prior distribution over contingency tables, for example in the methods
for clustering discrete data presented in [70, 71].

3.2 Normalized mutual information

The mutual information presented in the previous section computes the absolute shared
information content of two labelings of the same set of objects. Yet, this absolute number
of bits is difficult to interpret in isolation. The mutual information is therefore often
normalized to help contextualize the result. In this section we discuss how the symmetric
normalized mutual information (NMI) typically used for this purpose also introduces a bias
to the measure, and how we can instead normalize the mutual information in an unbiased
way. We then use this corrected measure to compare the performance of a basket of
popular algorithms for network community detection and show that one’s conclusions
about which algorithm is best are significantly affected by the biases in the traditional
mutual information.

3.2.1 Introduction

As discussed in the last section, mutual information is a useful tool to compare two
different labelings of a set. The measure works by asking how efficiently we can describe
one labeling if we already know the other [34]. Specifically, it measures how much less
information it takes to communicate the first labeling if we know the second versus if we
do not. In this section, we apply the mutual information to evaluate the performance of
algorithms for network community detection [36]. One takes a network whose community
structure is already known and applies a community detection algorithm to it to infer the
communities. Then one uses mutual information to compare the output of the algorithm
to the known correct communities. Algorithms that consistently achieve high mutual
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information scores are considered good.
In this assessment, we must be weary of biases in our metric. For example, the tradi-

tional mutual information contains a bias towards labelings with too many groups. As
shown in Section 3.1, this effect can be remedied by "reducing" the mutual information to
better reflect the true information costs of transmission [65]. In practice, another drawback
of the mutual information arises when the measure is normalized, as it commonly is to
improve interpretability. The most popular normalization scheme creates a measure that
runs between zero and one by dividing the mutual information by the arithmetic mean of
the entropies of the two labelings being compared [10], although one can also normalize
by the minimum, maximum, or geometric mean of the entropies. As we demonstrate in
this section, however, these normalizations introduce biases into the results by compar-
ison with the unnormalized measure, because the normalization factor depends on the
candidate labeling as well as the ground truth. This effect can be large enough to change
scientific outcomes, and we provide examples of this phenomenon.

In order to avoid this latter bias, while still retaining the interpretability of a normalized
mutual information measure, we favor normalizing by the entropy of the ground-truth
labeling alone. This removes the source of bias but introduces an asymmetry in the nor-
malization. At first sight this asymmetry may seem undesirable, and previous authors
have gone to some lengths to avoid it. Here, however, we argue that it is not only justified
but actually desirable, for several reasons. First, many of the classification problems we
consider are unaffected by the asymmetry, since they involve the comparison of one or
more candidate labelings against a single, unchanging ground truth. Moreover, by con-
trast with the multitude of possible symmetric normalizations, the asymmetric measure
we propose is the unique way to normalize the mutual information without introducing
biases due to the normalization itself.

More broadly, the asymmetric measure is more informative than the conventional sym-
metric one. Consider for instance the common situation where the groups or communities
in one labeling are a subdivision of those in the other. We might for example label indi-
viduals by the country they live in on the one hand and by the town or city on the other.
Then the more detailed labeling tells us everything there is to know about the coarser one,
but the reverse is not true: telling you the city fixes the country, but not vice versa. Thus
one could argue that the mutual information between the two should be asymmetric, and
this type of asymmetry will be a key feature of the measures we study.

Both drawbacks of the standard mutual information—bias towards too many groups
and dependence of the normalization on the candidate labeling—can be addressed simul-
taneously by using an asymmetric normalized reduced mutual information as defined
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in this section. In support of this approach we present an extensive comparison of the
performance of this and other variants of the mutual information in network community
detection tasks, generating a large number of random test networks with known com-
munity structure and a variety of structural parameters, and then attempting to recover
the communities using popular community detection algorithms. Within this framework,
we find that conclusions about which algorithms perform best are significantly impacted
by the choice of mutual information measure, and specifically that traditional measures
erroneously favor algorithms that find too many communities, but our proposed measure
does not.

3.2.2 Normalization of the mutual information

The absolute mutual information of two labelings 𝑔 and 𝑐 is equal to the total entropy of 𝑔
minus the conditional entropy of 𝑔 given 𝑐:

𝐼(𝑐;𝑔) = 𝐻(𝑔) − 𝐻(𝑔|𝑐). (3.36)

Loosely, we say that 𝐼(𝑐;𝑔) measures "how much 𝑐 tells us about 𝑔." Since the condi-
tional information content 𝐻(𝑔|𝑐) is nonnegative, the mutual information must satisfy
inequalities

𝐼(𝑐;𝑔) ≤ 𝐻(𝑔), 𝐻(𝑐), (3.37)

which are saturated by

𝐼(𝑔;𝑔) = 𝐻(𝑔), 𝐼(𝑐; 𝑐) = 𝐻(𝑐). (3.38)

In this work we consider three versions of the mutual information which each satisfy these
inequalities. First, the traditional mutual information (MI) of Eq. (3.12),

𝐼0(𝑐;𝑔) = log
𝑛!

∏
𝑟𝑠 𝑛

(𝑔𝑐)
𝑟𝑠 !∏

𝑟 𝑛
(𝑔)
𝑟 !

∏
𝑠 𝑛

(𝑐)
𝑠 !
, (3.39)

a measure biased towards labelings 𝑐 with too many groups. We consider two variants
that avoid this bias: a correction for chance known as the adjusted mutual information
(AMI),

𝐼𝐴(𝑐;𝑔) = 𝐼0(𝑐;𝑔) −
〈
𝐼0(𝑐;𝑔)

〉
{𝑐|𝑛(𝑐)} , (3.40)
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and the reduced mutual information (RMI) defined in Section 3.1,

𝐼(𝑐;𝑔) = log
𝑛!

∏
𝑟𝑠 𝑛

(𝑔𝑐)
𝑟𝑠 !∏

𝑟 𝑛
(𝑐)
𝑟 !

∏
𝑠 𝑛

(𝑔)
𝑠 !

+ log
(
𝑛 + 𝑞𝑔𝛼𝑔 − 1
𝑞𝑔𝛼𝑔 − 1

)

−
𝑞𝑔∑
𝑟=1

log
(
𝑛(𝑔)𝑟 + 𝛼𝑔 − 1

𝛼𝑔 − 1

)

−
𝑞𝑐∑
𝑠=1

log
(
𝑛(𝑐)𝑠 + 𝑞𝑔𝛼𝑔|𝑐 − 1

𝑞𝑔𝛼𝑔|𝑐 − 1

)

+
𝑞𝑔∑
𝑟=1

𝑞𝑐∑
𝑠=1

log
(
𝑛(𝑔𝑐)𝑟𝑠 + 𝛼𝑔|𝑐 − 1

𝛼𝑔|𝑐 + 1

)
. (3.41)

As discussed in Appendix C.18, although we prefer the reduced mutual information, both
the AMI and RMI serve a similar role.

Regardless of our choice, a fundamental difficulty with mutual information as a mea-
sure of similarity is that its range of values depends on the particular application, which
makes it difficult to say when a value is large or small. Is a mutual information of 10 a
large value? Sometimes it is and sometimes it isn’t, depending on the context. To get
around this obstacle one commonly normalizes the mutual information so that it takes a
maximum value of 1 when the candidate labeling agrees exactly with the ground truth.
There are a number of ways this can be achieved and, as we show here, they are not all
equal. In particular, some, including the most popularly used normalization, can result
in biased results and should, in our opinion, be avoided. In its place, we propose an
alternative, unbiased normalized measure.

The most common normalized measure, commonly referred to simply as the "normal-
ized mutual information," uses the plain mutual information 𝐼0(𝑐;𝑔) as a base measure
and normalizes it thus:

NMI(𝑆)0 (𝑐;𝑔) = 𝐼0(𝑐;𝑔)
1
2[𝐻0(𝑐) + 𝐻0(𝑔)]

=
𝐼0(𝑐;𝑔) + 𝐼0(𝑔; 𝑐)
𝐼0(𝑐; 𝑐) + 𝐼0(𝑔;𝑔) . (3.42)

This measure has a number of desirable features. Because of the inequalities in (3.37),
its value falls strictly between zero and one. And since both the base measure and the
normalization are symmetric under interchange of 𝑐 and 𝑔, the normalized measure also
retains this symmetry (hence the superscript "(𝑆)," for symmetric).

Equation (3.42) is not the only normalization that achieves these goals. Equation (3.37)
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Figure 3.9: Normalization can impact which labeling is preferred by a mutual
information measure. For the ground-truth labeling 𝑔 (top), the standard unnormalized
mutual information 𝐼0(𝑐,𝑔) of Eq. (3.39) (Stirling approximated) gives different scores to
the two candidate labelings 𝑐𝐴 and 𝑐𝐵, the former receiving a higher score than the latter.
By definition, the asymmetrically normalized mutual information will always agree with
the unnormalized measure, but the symmetrically normalized measure may not, as is
the case here: in this example the symmetric measure scores candidate 𝑐𝐵 higher. Note
that the network itself plays no role here—it is included only as a visual aid, as the
mutual information values depend only on the sizes of the shaded regions.
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implies that

𝐼0(𝑐;𝑔) ≤ min(𝐼0(𝑐; 𝑐), 𝐼0(𝑔;𝑔))
≤

√
𝐼0(𝑐; 𝑐)𝐼0(𝑔;𝑔)

≤ max(𝐼0(𝑐; 𝑐), 𝐼0(𝑔;𝑔)), (3.43)

which gives us three more options for a symmetric denominator in the normalized mea-
sure. The arithmetic mean in Eq. (3.42), however, sees the most use by far [75, 102, 140, 54].

We can extend the notion of symmetric normalization to any other base measure of
mutual information 𝐼𝑋(𝑐;𝑔) satisfying the inequality Eq. (3.37), such as adjusted or reduced
mutual information [64], by writing

NMI(𝑆)𝑋 (𝑐;𝑔) = 𝐼𝑋(𝑐;𝑔) + 𝐼𝑋(𝑔; 𝑐)
𝐼𝑋(𝑐; 𝑐) + 𝐼𝑋(𝑔;𝑔) . (3.44)

All such measures, however, including the standard measure of Eq. (3.42), share a crucial
shortcoming, that the normalization depends on the candidate labeling 𝑐 and hence that
the normalized measure can prefer a different candidate labeling to the base measure
purely because of the normalization. Figure 3.9 shows an example of how this can occur.
Two candidate labelings 𝑐𝐴 and 𝑐𝐵 are considered for the same ground truth 𝑔. Under
the unnormalized mutual information of Eq. (3.39), candidate A receives a higher score
than candidate B, but under the normalized measure of Eq. (3.42) the reverse is true. This
behavior is due to the difference in entropy 𝐼0(𝑐; 𝑐) between the two candidate divisions,
the one on the right having larger entropy than the one on the left, which increases its
normalization factor and correspondingly decreases the normalized mutual information.

We argue that the unnormalized measure is more correct on this question, having a
direct justification in terms of information theory. The purpose of the normalization is
purely to map the values of the measure onto a convenient numerical interval, and should
not change outcomes as it does here. Moreover, different symmetric normalizations can
produce different results. For instance, if one normalizes by max(𝐼0(𝑐; 𝑐), 𝐼0(𝑔;𝑔)) in Fig. 3.9
then candidate 𝑐𝐴 is favored in all cases.

These issues are unavoidable when using a symmetric normalization scheme. In any
such scheme the normalization must depend on both 𝑐 and 𝑔 and hence can vary with
the candidate labeling. However, if we drop the requirement of symmetry then we can
normalize in a way that avoids these issues. We define the asymmetric normalization of any
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base measure 𝐼𝑋 as
NMI(𝐴)𝑋 (𝑐;𝑔) = 𝐼𝑋(𝑐;𝑔)

𝐼𝑋(𝑔;𝑔) . (3.45)

This definition still gives NMI(𝐴)𝑋 (𝑔;𝑔) = 1, but now the normalization factor in the denom-
inator has no effect on choices between candidate labelings, since it is independent of 𝑐.
In fact, Eq. (3.45) is the only way to normalize such that 𝐼(𝐴)𝑋 (𝑔;𝑔) = 1 while simultaneously
ensuring that the preferred candidate is always the same as for the base measure. Thus
this measure also removes any ambiguity about how one should perform the normaliza-
tion. Loosely, this asymmetrically normalized mutual information measures "how much 𝑐
tells us about 𝑔 as a fraction of all there is to know about 𝑔." Such asymmetric choices of
normalization have appeared in other contexts under the name "coefficient of constraint"
or "coefficient of uncertainty" [33, 126, 49], although symmetric normalizations are almost
universally used in the model validation context, where they introduce the bias we discuss
here.

The amount of bias inherent in the symmetrically normalized measure when compared
with the asymmetric one can be quantified by the ratio between the two:

NMI(𝑆)𝑋 (𝑐;𝑔)
NMI(𝐴)𝑋 (𝑐;𝑔)

=
[𝐼𝑋(𝑐;𝑔) + 𝐼𝑋(𝑔; 𝑐)]/[𝐼𝑋(𝑐; 𝑐) + 𝐼𝑋(𝑔;𝑔)]

𝐼𝑋(𝑐;𝑔)/𝐼𝑋(𝑔;𝑔)

=
1 + 𝐼𝑋(𝑔; 𝑐)/𝐼𝑋(𝑐;𝑔)
1 + 𝐼𝑋(𝑐; 𝑐)/𝐼𝑋(𝑔;𝑔) . (3.46)

If the base measure 𝐼𝑋 is itself symmetric (which it is, either exactly or approximately, for
all the measures we consider), then this simplifies further to

NMI(𝑆)𝑋 (𝑐;𝑔)
NMI(𝐴)𝑋 (𝑐;𝑔)

=
𝐻(𝑔)

1
2[𝐻(𝑔) + 𝐻(𝑐)] . (3.47)

Values of this quantity below (above) 1 indicate that the value of the symmetric measure
is biased low (high). Thus, for instance, complex candidate labelings 𝑐 that have higher
entropy than the ground truth will result in a symmetric measure whose values are
too low. As discussed in the introduction, traditional mutual information measures are
particularly problematic when the candidate is a refinement of the ground truth, meaning
the candidate groups are subsets of the ground-truth groups. In that case the traditional
measure returns values that are too high. Equation (3.47) implies that, to some extent,
the symmetric normalization will correct this issue: a candidate 𝑐 that takes the form of
a refinement of 𝑔 will have 𝐻(𝑐) > 𝐻(𝑔), which will lower the value of the symmetrically

110



normalized mutual information. This may in part explain why these biases have been
overlooked in the past: two wrongs have conveniently canceled to make a right.

We argue, however, that this is not the best way to address the problem and that the
correct approach is instead to use the reduced mutual information. The reduced mutual
information also corrects for the case where one labeling is a refinement of the other,
but does so in a more principled manner that directly addresses the root cause of the
problem, rather than merely penalizing complex candidate labelings in an ad hoc manner
as a side-effect of normalization.

We will see examples of these effects in Section 3.2.3, where we apply the various
measures to community detection in networks and find that indeed the traditional sym-
metrically normalized mutual information is biased. In some cases it is fortuitously biased
in the right direction, although it is still problematic in some others.

An obvious downside of asymmetric normalization is the loss of the symmetry in
the final measure. In the most common applications of normalized mutual information,
where labelings are evaluated against a ground truth, an inherently asymmetric situation,
the asymmetric measure makes sense, but in other cases the lack of symmetry can be
undesirable. Embedding and visualization methods that employ mutual information
as a similarity measure, for example, normally demand symmetry [104]. And in cases
where one is comparing two candidate labelings directly to one another, rather than to a
separate ground truth, a symmetric measure may be preferable. Even in this latter case,
however, the asymmetric measure may sometimes be the better choice, as discussed in
the introduction. For instance, when one labeling 𝑐1 is a refinement of the other 𝑐2, the
information content is inherently asymmetric: 𝑐1 says more about 𝑐2 than 𝑐2 does about 𝑐1.
An explicit example of this type of asymmetry is shown in Figure 3.10, where we consider
two labelings of 27 objects. The left labeling 𝑐1 is a detailed partition of the objects into
nine small groups while the right labeling 𝑐2 is a coarser partition into only three groups,
each of which is an amalgamation of three of the smaller groups in 𝑐1. Because of this
nested relationship, it is relatively easy to transmit 𝑐2 given knowledge of 𝑐1 but more
difficult to do the reverse. This imbalance is reflected in the asymmetric normalized
mutual information values in each direction (top and bottom arrows in the figure), but
absent from the symmetric version (middle row).

Combining the benefits of asymmetric normalization and the reduced mutual informa-
tion, we advocate in favor of the asymmetrically-normalized reduced mutual information
defined by

NMI(𝐴)(𝑐;𝑔) = 𝐼(𝑐;𝑔)
𝐼(𝑔;𝑔) , (3.48)
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Figure 3.10: Values of the various normalized mutual information measures between
two example partitions of the same set of 27 objects. The left partition 𝑐1 divides the
objects into nine groups of three objects each and is a refinement of the right partition 𝑐2,
which divides them into only three groups. The arrows indicate the direction of the
comparison and the accompanying notations give the values of the mutual information
measures. All three asymmetrically normalized measures capture the intuition that the
partition 𝑐1 tells us more about 𝑐2 than 𝑐2 tells us about 𝑐1.

where the mutual information 𝐼(𝑐;𝑔) is quantified as in Eq. (3.41). This measure correctly
accounts for the information contained in the contingency table, returns a negative value
when 𝑐 is unhelpful for recovering the ground truth, returns 1 if and only if 𝑐 = 𝑔, and
always favors the same labeling as the unnormalized measure. The traditional normalized
mutual information possesses none of these desirable qualities.

3.2.3 Example application: Community detection

As an example of the performance of the various measures discussed above, we revisit the
extensive series of tests of algorithms for network community detection used in Section 3.1.
In these examples we apply the LFR graph model [77] to generate random test networks
with known community structure and realistic distributions of node degrees and group
sizes, and then attempt to recover that structure using a variety of standard community
detection algorithms, quantifying the accuracy of the recovery with six different mea-
sures: symmetrically and asymmetrically normalized versions of the traditional mutual
information, the adjusted mutual information, and the reduced mutual information. A
number of studies have been performed in the past to test the efficacy of community
detection algorithms on LFR benchmark networks [75, 102, 140, 54], but using only the
symmetrically normalized, non-reduced mutual information as a similarity measure. Our
results indicate that this measure can produce biased outcomes and we recommend the
asymmetric reduced mutual information instead.
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Figure 3.11: Performance of three community detection algorithms: InfoMap (red) and
modularity maximization with 𝛾 = 1 (green) and 𝛾 = 10 (blue)—see key on right. The
colors in each panel of this figure indicate which of the three is best able to find the
known communities in a large set of LFR benchmark networks, according to the six
mutual information measures we consider. Mixtures of red, green, and blue denote the
proportions of test cases in which each algorithm performs best. Regions in gray indicate
parameter values for which no algorithm achieved a positive mutual information score.

The LFR model contains a number of free parameters that control the size of the
networks generated, their degree distribution, the distribution of community sizes, and the
relative probability of within- and between-group edges. (See Appendix C.16 for details
of the LFR generative process.) We find that the distributions of degrees and community
sizes do not significantly impact the relative performance of the various algorithms tested
and that performance differences are driven primarily by the size 𝑛 of the networks and
the mixing parameter 𝜇 that controls the ratio of connections within and between groups,
so our tests focus on performance as a function of these parameters.

3.2.4 Comparison between variants of the mutual information

Figure 3.11 summarizes the relative performance of the various mutual information mea-
sures in our tests. In this set of tests we limit ourselves, for the sake of clarity, to the
top three community detection algorithms—InfoMap and the two variants of modularity
maximization—and measure which of the three returns the best results according to each
of our six mutual information measures, as a function of network size 𝑛 and the mixing
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parameter 𝜇. Each point in each of the six panels is color-coded with some mix of red,
green, and blue to indicate in what fraction of cases each of the algorithms performs best
according to each of the six measures and, as we can see, the results vary significantly
among measures. An experimenter trying to choose the best algorithm would come to
substantially different conclusions depending on which measure they use.

One consistent feature of all six mutual information measures is the large red area in
each panel of Fig. 3.11, which represents the region in which the InfoMap algorithm per-
forms best. Regardless of the measure used, InfoMap is the best performer on networks
with low mixing parameter (i.e., strong community structure) and relatively large network
size. For higher mixing (weaker structure) or smaller network sizes, modularity maxi-
mization does better. Which version of modularity is best, however, depends strongly
on the mutual information measure. The traditional symmetrically normalized mutual
information (top left panel) mostly favors the version with a high resolution parameter of
𝛾 = 10 (blue), but the asymmetric reduced measure for which we advocate (bottom right)
favors the version with 𝛾 = 1 (green). (The regions colored gray in the figure are those in
which no algorithm receives a positive mutual information score and hence all algorithms
can be interpreted as failing.)

These results raise significant doubts about the traditional measure. Consider the lower
right corner of each plot in Fig. 3.11, which is the regime of small network sizes 𝑛 and
high mixing 𝜇 so that the community signal is weak and the noise is high. Here, the
adjusted and reduced mutual informations indicate that all algorithms are failing. This
is expected: for very weak community structure all detection algorithms are expected
to show a "detectability threshold" beyond which they are unable to identify any com-
munities [42, 86, 93]. The standard normalized mutual information, on the other hand,
claims to find community structure in this regime using the 𝛾 = 10 version of modularity
maximization. This occurs because the 𝛾 = 10 algorithm finds many small communities
and, as discussed in Section 3.1.2, a labeling with many communities, even completely
random ones, is accorded a high score by a non-reduced mutual information. The pres-
ence of this effect is demonstrated explicitly in Appendix C.16.1 for the case of modularity
maximization with 𝛾 = 10, and this offers a clear reason to avoid the standard measure.

The bottom left panel in Fig. 3.11 shows results for the asymmetrically normalized
version of the traditional mutual information, which gives even worse results than the
symmetric version, with hardly any region in which the 𝛾 = 1 version of modularity
maximization outperforms the 𝛾 = 10 version. This behavior arises for the reasons
discussed in Section 3.2.2—the bias inherent in the symmetric normalization fortuitously
acts to partially correct the errors introduced by neglecting the information content of the
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Figure 3.12: Performance of each of the six community detection algorithms considered
here in identifying the known communities in a large set of LFR benchmark networks, as
quantified by the asymmetrically normalized reduced information measure 𝐼(𝐴)(𝑐;𝑔)
proposed in this work. Gray areas indicate parameter values for which NMI < 0, so that
the conditional encoding is less efficient than the direct encoding.

contingency table. The asymmetric normalization eliminates this correction and hence
performs more poorly. The correct solution to this problem, however, is not to use a
symmetric normalization, which can bias outcomes in other ways as we have seen, but
rather to adopt a reduced mutual information measure.

Finally, comparing the middle and right-hand columns of Fig. 3.11, we see that the
results for the adjusted and reduced mutual information measures are quite similar in
these tests, although there are some differences. In particular, the adjusted measure
appears to find more significant structure for higher mixing than the reduced measure.
This occurs because, as discussed in Appendix C.18 and Ref. [101], the adjusted measure
encodes the contingency table in a way that is optimized for more uniform tables than the
reduced measure, and thus penalizes uniform tables less severely, leading to overestimates
of the mutual information in the regime where detection fails—in this regime the candidate
and ground-truth labelings are uncorrelated which results in a uniform contingency table.
This provides further evidence in favor of using a reduced mutual information measure.
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3.2.5 Comparison between community detection algorithms

Settling on the asymmetrically normalized reduced mutual information as our preferred
measure of similarity, we now ask which community detection algorithm or algorithms
perform best according to this measure? We have already given away the answer—
InfoMap and modularity maximization get the nod—but here we give evidence for that
conclusion.

Figure 3.12 shows results for all six algorithms listed in Section 3.2.3. Examining the
figure, we see that in general the best-performing methods are InfoMap, traditional mod-
ularity maximization with 𝛾 = 1, and the inference method using the degree-corrected
stochastic block model1. Among the algorithms considered, InfoMap achieves the highest
mutual information scores for lower values of the mixing parameter 𝜇 in the LFR model,
but fails abruptly as 𝜇 increases, so that beyond a fairly sharp cutoff around 𝜇 = 0.5 other
algorithms do better. As noted by previous authors [11], InfoMap’s specific failure mode
is that it places all nodes in a single community and this behavior can be used as a simple
indicator of the failure regime. In this regime one must use another algorithm. Either
the modularity or inference method are reasonable options, but modularity has a slight
edge, except in a thin band of intermediate 𝜇 values which, in the interests of simplicity,
we choose to ignore. (We discuss some caveats regarding the relationship between the
degree-corrected stochastic block model and the LFR benchmark in Appendix C.16.)

Thus—always assuming the LFR benchmark is a good test of performance—our recom-
mendations for the best community detection algorithm are relatively straightforward. If
we are in a regime where InfoMap succeeds, meaning it finds more than one community,
then one should use InfoMap. If not, one should use standard modularity maximization
with 𝛾 = 1. That still leaves open the question of how the modularity should be maxi-
mized. In our studies we find the best results with simulated annealing, but simulated
annealing is computationally expensive. In regimes where it is not feasible, we recom-
mend using the Leiden algorithm instead. (Tests using other computationally efficient
maximization schemes, such as the Louvain and spectral algorithms, generally performed
less well than the Leiden algorithm.)

3.2.6 Conclusions

In this chapter we have examined the performance of a range of mutual information
measures for comparing labelings of objects in classification, clustering, or community

1The degree-corrected stochastic block model used in these tests is not quite the same as the version
described in Section 2.1. See Appendix C.16.2 for details.
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detection applications. We argue that the commonly used normalized mutual informa-
tion is biased in two ways: (1) because it ignores the information content of the contingency
table, which can be large, and (2) because the symmetric normalization it employs intro-
duces spurious dependence on the labeling. We argue in favor of a different measure,
an asymmetrically normalized version of the reduced mutual information, which rectifies
both of these shortcomings.

To demonstrate the effects of using different mutual information measures, we have
presented results of an extensive set of numerical tests on popular network community
detection algorithms, as evaluated by the various measures we consider. We find that
conclusions about which algorithms are best depend substantially on which measure we
use.
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Chapter 4

Hierarchies

In Chapters 2 and 3, we discussed how to find and evaluate group structures in undirected
networks. In this chapter, we focus instead on the directed structure of networks, and the
hierarchies they reveal.

We reformulate and extend the Bradley-Terry model described in Section 1.2.4 to model
two features: an element of randomness or luck that leads to upset wins, and a "depth
of competition" variable that measures the complexity of a game or hierarchy. Fitting
the resulting model we estimate depth and luck in a range of games, sports, and social
situations. In general, we find that social competition tends to be "deep," meaning it has
a pronounced hierarchy with many distinct levels, but also that there is often a nonzero
chance of an upset victory. Competition in sports and games, by contrast, tends to be
shallow and in most cases there is little evidence of upset wins. Our presentation here is
based upon [67], work in collaboration with Mark Newman.

4.1 Introduction

One of the oldest and best-studied problems in data science is the ranking of a set of items,
individuals, or teams based on the results of pairwise comparisons between them. Such
problems arise in sports, games, and other competitive human interactions, in paired com-
parison surveys in market research and consumer choice, in revealed-preference studies
of human behavior, and in studies of social hierarchies in both humans and animals. In
each of these settings, exemplified in Section 1.1.3, one has a set of comparisons between
pairs of items or competitors, with outcomes of the form "A beats B" or "A is preferred
to B," and the goal is to determine a ranking of competitors from best to worst, allowing for
the fact that the data may be sparse (there may be no data for many pairs) or contradictory
(e.g., A beats B beats C beats A). A group of chess players might play in a tournament,
for example, and record wins and losses against each other. Consumers might express
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preferences between pairs of competing products, either directly in a survey or implicitly
through their purchases or other actions. A flock of chickens might peck each other as a
researcher records who pecked whom in order to establish the classic "pecking order."

A large number of methods have been proposed for solving ranking problems of
this kind—see Refs. [37, 25, 78] for reviews. In this chapter we consider one of the
most common, which uses a statistical model for wins and losses and then fits that
model to observed win/loss data. In the most widely adopted version one considers
a population of 𝑛 competitors labeled by 𝑖 = 1 . . . 𝑛 and assigns to each a real score
parameter 𝑠𝑖 ∈ [−∞,∞]. Then the probability that 𝑖 beats 𝑗 in a single pairwise match or
contest is assumed to be some function of the difference of their scores: 𝑝𝑖 𝑗 = 𝑓 (𝑠𝑖 − 𝑠 𝑗).
The score function 𝑓 (𝑠) satisfies the following axioms:

1. It is increasing in 𝑠, since by definition a better competitor has a higher probability
of winning than a worse one.

2. It tends to 1 as 𝑠 → ∞ and to 0 as 𝑠 → −∞, meaning that an infinitely good player
always wins and an infinitely poor one always loses.

3. It is antisymmetric about its mid-point at 𝑠 = 0, with the form

𝑓 (−𝑠) = 1 − 𝑓 (𝑠), (4.1)

because the probability of losing is one minus the probability of winning. As a
corollary, this also implies that the probability 𝑓 (0) of beating an evenly matched
opponent is always 1

2 .

Subject to these constraints the function can still take a wide variety of forms, but the most
popular choice by far is the logistic function 𝑓 (𝑠) = 1/(1 + 𝑒−𝑠)—shown as the bold curve
in Fig. 4.1a—which gives

𝑓 (𝑠𝑖 − 𝑠 𝑗) = 𝑒 𝑠𝑖

𝑒 𝑠𝑖 + 𝑒 𝑠 𝑗 . (4.2)

This score function yields the Bradley-Terry model familiar from Section 1.2.4.
Given the model, one can estimate the values of the score parameters 𝑠𝑖 by a number of

standard methods, including maximum likelihood estimation [143, 20, 52, 63, 100], max-
imum a posteriori estimation [136], or Bayesian methods [38, 24], then rank competitors
from best to worst in order of their scores. The fitted model can also be used to predict
the outcome of future contests between any pair of competitors, even if they have never
directly competed in the past.
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Figure 4.1: Score functions 𝑓 (𝑠). (a) The bold curve represents the standard logistic
function 𝑓 (𝑠) = 1/(1 + 𝑒−𝑠) used in the Bradley-Terry model. The remaining curves show
the function 𝑓𝛼 of Eq. (4.8) for increasing values of the luck parameter 𝛼. (b) The score
function 𝑓𝛽 of Eq. (4.9) for different values of the depth of competition 𝛽, both greater
than 1 (steeper) and less than 1 (shallower).

This approach is effective and widely used, but the standard Bradley-Terry model is
a simplistic representation of the patterns of actual competition and omits many im-
portant elements found in real-world interactions. Generalizations of the model have
been proposed that incorporate some of these elements, such as the possibility of ties or
draws between competitors [114, 39], multiway competition as in a horse race [83, 111],
the "home-field advantage" of playing on your own turf [8], or multidimensional score
parameters that allow for intransitive win probabilities between competitors [28, 85]. In
this chapter we consider a further extension of the model that incorporates two additional
features of particular interest, which have received comparatively little previous attention:
the element of luck inherent for instance in games of chance, and the notion of "depth of
competition," which captures the complexity of games or the number of distinct levels in
a social hierarchy. In the remainder of the chapter we define and motivate this model and
then describe a Bayesian approach for fitting it to data, which we use to infer the values
of the luck and depth variables for a variety of real-world data sets drawn from different
arenas of human and animal competition. Our results suggest that social hierarchies are
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in general deeper and may have a larger element of luck to their dynamics than recre-
ational games and sports, which tend to be shallower and show little evidence of a luck
component.

Software implementations of the various methods described in this chap-
ter are available at https://github.com/maxjerdee/pairwise-ranking and
https://doi.org/10.5061/dryad.kh18932fc.

4.2 The model

Suppose we observe 𝑚 matches between 𝑛 players. The outcomes of the matches can be
represented by an 𝑛 × 𝑛 matrix A with element 𝐴𝑖 𝑗 equal to the number of times player 𝑖
beats player 𝑗. Within the standard Bradley-Terry model the probability of a win is given
by Eq. (4.2) and, assuming the matches to be statistically independent, the probability or
likelihood of the complete set of observed outcomes is

𝑃(A|s) =
∏
𝑖 𝑗

𝑓 (𝑠𝑖 − 𝑠 𝑗)𝐴𝑖 𝑗 =
∏
𝑖 𝑗

(
𝑒 𝑠𝑖

𝑒 𝑠𝑖 + 𝑒 𝑠 𝑗
)𝐴𝑖 𝑗

, (4.3)

where s is the vector with elements 𝑠𝑖 and terms that only depend on the data A have
been dropped. (We assume that the structure of the tournament—who plays whom—is
determined separately, so that (4.3) is a distribution over the directions of the wins and
losses only and not over which pairs of players competed.)

The scores are traditionally estimated by the method of maximum likelihood, maxi-
mizing (4.3) with respect to all 𝑠𝑖 simultaneously to give estimates

ŝ = argmaxs𝑃(A|s). (4.4)

These maximum likelihood estimates (MLEs) can then be sorted in order to give a ranking
of the competitors, or simply reported as measures of strength in their own right. The
widely used Elo ranking system for chess players, for example, is essentially a version of
this approach, but extended to allow for dynamic updates as new matches are added to
the data set.

The maximum likelihood approach unfortunately has some drawbacks. For one, the
likelihood is invariant under a uniform additive shift of all scores 𝑠𝑖 and hence the scores
are not strictly identifiable, though this issue can easily be fixed by normalization. A more
serious problem is that the likelihood maximum does not exist at all unless the network
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of interactions—the directed network with adjacency matrix A—is strongly connected
(meaning there is a directed chain of victories from any player to any other), and the
maximum likelihood estimation procedure fails, with the divergence of some or all of the
scores, unless this relatively stringent condition is met.

This issue can be addressed by introducing a prior on the scores and adopting a Bayesian
perspective. A variety of potential priors for this purpose have been systematically ex-
amined by Whelan [136], who, after careful consideration, recommends a Gaussian prior
with mean zero. The variance is arbitrary—it merely sets the scale on which the score 𝑠
is measured—but for subsequent convenience we here choose a variance of 1

2 so that the
prior on s takes the form

𝑃(s) =
𝑛∏
𝑖=1

1√
𝜋
𝑒−𝑠

2
𝑖 . (4.5)

An alternative prior, also recommended by Whelan, is the logistic distribution

𝑃𝐿(s) =
𝑛∏
𝑖=1

1
(1 + 𝑒 𝑠𝑖 )(1 + 𝑒−𝑠𝑖 ) . (4.6)

In practice the Gaussian and logistic distributions are similar in shape and the choice of
one or the other does not make a great deal of difference. The logistic distribution is
perhaps the less natural of the two and we primarily use the Gaussian distribution in this
chapter, but the logistic distribution does have the advantage of leading to faster numerical
algorithms and we have used it in previous work for this reason [99, 100]. We also include
it in the basket of models that we compare in Section 4.5.

Once we have defined a prior on the scores we can calculate a maximum a posteriori
(MAP) estimate of their values as

ŝ = argmaxs𝑃(s|A) = argmaxs𝑃(A|s)𝑃(s). (4.7)

The MAP estimate always exists regardless of whether the interaction network is strongly
connected, and using a prior also eliminates the invariance of the probability under an
additive shift and hence the need for normalization. As an alternative to computing a
MAP estimate we can also simply return the full posterior distribution 𝑃(s|A), which
gives us complete information on the expected values and uncertainty of the scores given
the observed data.
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4.3 Extensions of the model

In this section we define generalizations of the Bradley-Terry model that extend the score
function 𝑓 in two useful ways, while keeping other aspects of the model fixed, including
the normal prior. The specific generalizations we consider involve dilation or contraction
of the score function in the vertical and horizontal directions. Vertical variation controls
the element of luck that allows a weak player to sometimes beat a strong one; horizontal
variation controls the "depth of competition," a measure of the complexity of a game or
contest.

4.3.1 Upset wins and luck

The first generalization of the Bradley-Terry model that we consider is one where the
function 𝑓 is contracted in the vertical direction, as shown in Fig. 4.1a. We parametrize
this function in the form

𝑓𝛼(𝑠) = 1
2𝛼 + (1 − 𝛼) 1

1 + 𝑒−𝑠 , (4.8)

with 𝛼 ∈ [0, 1]. In the traditional Bradley-Terry model 𝑓 (𝑠) tends to 0 and 1 as 𝑠 → ±∞, as
discussed in the introduction, but in the modified model with 𝛼 > 0 this is no longer the
case. One can think of the parameter 𝛼 as controlling the probability of an "upset win" in
which an infinitely good player loses or an infinitely bad player wins. (The probabilities
of these two events must be the same because of the antisymmetry condition, Eq. (4.1).)

For some games or competitions it is reasonable that 𝑓 (𝑠) tends to zero and one at the
limits. In a game like chess that has no element of randomness, an infinitely good player
may indeed win every time. In a game of pure luck like roulette, on the other hand,
both players have equal probability 1

2 of winning, regardless of skill. These two cases
correspond to the extreme values 𝛼 = 0 and 𝛼 = 1 respectively in Eq. (4.8). Values in
between represent games that combine both luck and skill, like poker or backgammon,
with the precise value of 𝛼 representing the proportion of luck. For this reason we refer
to 𝛼 as the luck parameter, or simply the "luck."

(One could also consider the chance of the weaker player winning in the standard
Bradley-Terry model to be an example of luck or an upset win, but that is not how we use
these words here. In the present context the "luck" 𝛼 describes the probability of winning
the game even if one’s opponent is infinitely good, which is zero in the standard model
but nonzero in the model of Eq. (4.8) with 𝛼 > 0.)

Another way to think about 𝛼 is to imagine a game as a mixture of a luck portion
and a skill portion. With probability 𝛼 the players play a game of pure chance in which
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the winner is chosen at random, for instance by the toss of a coin. Alternatively, with
probability 1 − 𝛼, they play a game of skill, such as chess, and the winner is chosen with
the standard Bradley-Terry probability. The overall probability of winning is then given
by Eq. (4.8) and the parameter 𝛼 represents the fraction of time the game is decided by
pure luck. By fitting (4.8) to observed win-loss data we can learn the luck inherent in a
competition or hierarchy. We do this for a variety of data sets in Section 4.4.

4.3.2 Depth of competition

The second generalization we consider is one where the function 𝑓 is dilated or contracted
in the horizontal direction, as shown in Fig. 4.1b, by a uniform factor 𝛽 > 0 thus:

𝑓𝛽(𝑠) = 1
1 + 𝑒−𝛽𝑠 . (4.9)

The slope of this function at 𝑠 = 0 is given by

𝑓 ′𝛽(0) =
[

𝛽𝑒−𝛽𝑠

(1 + 𝑒−𝛽𝑠)2
]
𝑠=0

= 1
4𝛽, (4.10)

so 𝛽 is simply proportional to the slope. A more functional way of thinking about 𝛽 is in
terms of the probability that the stronger of a typical pair of competitors will win. With a
normal prior on 𝑠 of variance 1

2 as described in Section 4.2, the difference 𝑠𝑖 − 𝑠 𝑗 between
the scores of a randomly chosen pair of competitors will be a priori normally distributed
with variance 1, meaning the scores will be separated by an average (root-mean-square)
distance of 1. Consider two players separated by this average distance. If 𝛽 is small,
making 𝑓𝛽 a relatively flat function (the shallowest curve in Fig. 4.1b), the probability 𝑝𝑖 𝑗
of the stronger player winning will be close to 1

2 and there is a substantial chance that the
weaker player will win. Conversely, if 𝛽 is large then 𝑝𝑖 𝑗 will be close to 1 (the steepest
curve in Fig. 4.1b) and the stronger player is very likely to prevail.

This horizontal dilation of the score function 𝑓 (𝑠) for a fixed width prior 𝑃(s) is exactly
equivalent to instead dilating the prior 𝑃(s) and keeping the score function fixed as
described in Section 1.2.4 and illustrated in Figure 1.16. The parameter 𝛽 in Eq. (4.9)
therefore serves the same role as the depth of competition parameter 𝛽 in Eq. (1.57) and
controls the imbalance in strength or skill between the average pair of players. We will
therefore refer to the parameter in either formulation as the depth. Compared to the
presentation in Section 1.2.4, viewing the depth as a transformation of the score function
allows it to interact more directly with the luck, a vertical dilation of the score function.
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In either formulation, the behavioral definition of one "level" of skill is the same. In
Section 1.2.4 we considered the win probability achieved by a skill difference Δ𝑠 = 𝑠𝑖− 𝑠 𝑗 =
1 and unit logistic score function,

𝑝𝑖 𝑗 =
1

1 + 𝑒−Δ𝑠 =
1

1 + 𝑒−1 = 0.731... (4.11)

If we instead dilate the score function by a factor 𝛽, we can still define a "level" of skill as
the distance between scores Δ𝑠 = 𝑠𝑖 − 𝑠 𝑗 such that 𝑖 beats 𝑗 with the same probability of
about 73%,

𝑝𝑖 𝑗 =
1

1 + 𝑒−𝛽Δ𝑠 =
1

1 + 𝑒−1 . (4.12)

Therefore at a skill difference ofΔ𝑠 = 1/𝛽 we observe the same win probability that defines
a "level" of play. Since the form of the prior is fixed, there are therefore 𝛽 such meaningful
levels between the typical pair of players.

This count 𝛽 can be thought of as a measure of the complexity or depth of a game or
competition. A "deep" game, in this sense, is one that can be played at many levels, with
players at each level markedly better than those at the level below. Chess, which is played
at a wide range of skill levels from beginner to grandmaster, might be an example.

This concept of depth has a long history. For example, in an article in the trade pub-
lication Inside Backgammon in 1980 [117], world backgammon champion William Robertie
defined a "skill differential" as the strength difference between two players that results in
the better one winning 70 to 75% of the time—precisely our definition of a "level"—and
the "complexity number" of a sport or game as the number of such skill differentials that
separate the best player from the worst. Cauwet et al. [26] have defined a similar but more
formal measure of game depth that they call "playing-level complexity." There has also
been discussion in the animal behavior literature of the "steepness" of animal dominance
hierarchies [41], which appears to correspond to roughly the same idea.

One should be careful about the details. Robertie and Cauwet et al. both define their
measures in terms of the skill range between the best and worst players, but this could
be problematic in that the range will depend on the particular sample of players one has
and will tend to increase as the sample size gets larger, which seems undesirable. Our
definition avoids this by considering not the best and worst players in a competition but the
average pair of players, which gives a depth measure that is asymptotically independent
of sample size.

Even when defined in this way, however, the number of levels is not solely about the
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intrinsic complexity of the game, but does also depend on who is competing. For example,
if a certain competition is restricted to contestants who all fall in a narrow skill range, then
𝛽 will be small even for a complex game. In a world-class chess tournament, for instance,
where every player is an international master or better, the number of levels of play will be
relatively small even though chess as a whole has many levels. Thus empirical values of 𝛽
combine aspects of the complexity of the game with aspects of the competing population.

For this reason we avoid terms such as "complexity number" and "depth of game" that
imply a focus on the game alone and refer to 𝛽 instead as the "depth of competition,"
which we feel better reflects its meaning. (A variety of alternative notions of depth are
discussed in Appendix D.22.)

4.3.3 Combined model

Combining both the luck and depth of competition variables into a single model gives us
the score function

𝑓𝛼𝛽(𝑠) = 1
2𝛼 + (1 − 𝛼) 1

1 + 𝑒−𝛽𝑠 . (4.13)

In Section 4.4, we fit this form to observed data from a range of different areas of study in
order to infer the values of 𝛼 and 𝛽. In the process one can also infer the scores 𝑠𝑖 , which
can be used to rank the participants or predict the outcome of unobserved contests, and
we explore this angle later in the chapter. In this section, however, our primary focus is
on 𝛼 and 𝛽 and on understanding the varying levels of luck and depth in different kinds
of competition.

To perform the fit we consider again a data set represented by its adjacency matrix A

and write the data likelihood in the form of Eq. (4.3):

𝑃(A|s, 𝛼, 𝛽) =
∏
𝑖 𝑗

𝑓𝛼𝛽(𝑠𝑖 − 𝑠 𝑗)𝐴𝑖 𝑗 . (4.14)

The scores s are assumed to have the Gaussian prior of Eq. (4.5), and we assume a uniform
(least informative) prior on 𝛼, which means 𝑃(𝛼) = 1. We cannot use a uniform prior
on 𝛽, since it has infinite support, so instead we use a prior that is approximately uniform
over "reasonable" values of 𝛽 and decays in some slow but integrable manner outside this
range. A suitable choice in the present case is the half-Cauchy distribution

𝑃(𝛽) = 2w/𝜋
𝛽2 + w2 , (4.15)

where w controls the scale on which the function decays. In this chapter we use w = 4,
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which roughly corresponds to the range of variation in 𝛽 that we see in real-world data
sets, and has the convenient property of giving a uniform prior on the angle of 𝑓𝛽(𝑠) at the
origin.

It is worth mentioning that the choice of prior on 𝛽 does have an effect on the results in
some cases. When data sets are large and dense, priors tend to have relatively little impact
because the posterior distribution is narrowly peaked around the same set of values no
matter what choice we make. But some of the data sets we study here are quite sparse
and for these the results can vary with the choice of prior. Our qualitative conclusions
remain the same in all cases, but it is worth bearing in mind that the quantitative details
can change.

Combining the likelihood and priors, we now have

𝑃(s, 𝛼, 𝛽|A) = 𝑃(A|s, 𝛼, 𝛽)𝑃(𝛼)𝑃(𝛽)𝑃(s)
𝑃(A) . (4.16)

The prior on A is unknown but constant, so it can be ignored. We now draw from
the distribution 𝑃(s, 𝛼, 𝛽|A) to obtain a representative sample of values s, 𝛼, 𝛽. In our
calculations we generate the samples using the Hamiltonian Monte Carlo method [94]
as implemented in the probabilistic programming language Stan [15], which is ideal for
sampling from continuous parameter spaces such as this. The running time to obtain
the samples depends on the computational cost per iteration, which is proportional to the
number of matches𝑚, and on the Monte Carlo mixing time, which is roughly proportional
to the number of competitors 𝑛. The total running thus scales roughly as O(𝑚𝑛). In
practice, a few thousand samples are sufficient to get a good picture of the distribution of
𝛼 and 𝛽, which in our implementation takes anywhere from a few seconds to an hour or
so for our largest data sets.

4.3.4 Minimum violations ranking

One special case of our model worth mentioning is the limit 𝛽 → ∞ for fixed 𝛼 > 0. In
this limit the function 𝑓𝛼𝛽(𝑠) becomes a step function with value

𝑓𝛼,∞(𝑠) =



1
2𝛼 if 𝑠 < 0,
1
2 if 𝑠 = 0,

1 − 1
2𝛼 if 𝑠 > 0.

(4.17)
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For this choice the data likelihood becomes

𝑃(A|s, 𝛼, 𝛽) = ( 1
2𝛼

)v (1 − 1
2𝛼

)𝑚−v, (4.18)

where 𝑚 is the total number of games/interactions/comparisons and v is the number of
"violations," meaning games where the weaker player won. Then the log-likelihood is

log𝑃(A|s, 𝛼, 𝛽) = −v log
1 − 1

2𝛼
1
2𝛼

+ 𝑚 log
(
1 − 1

2𝛼
)

= −𝐴v − 𝐵, (4.19)

where 𝐴 and 𝐵 are positive constants. This log-likelihood is maximized when the number
of violations v is minimized, recovering the minimum violations ranking of Section 1.2.4, the
ranking such that the minimum number of games are won by the weaker player. Thus
the minimum violations ranking can be thought of as the limit of our model in the special
case where 𝛽 → ∞.

Just as we had defined models in Chapter 2 that generalize many SBMs for identifying
group structure, our model here includes both the standard Bradley-Terry model and
minimum violation ranking as special cases, allowing us to directly compare them on real
data sets.

4.4 Results

We have applied these methods to a range of data sets representing competition in sports
and games as well as social hierarchies in both humans and animals. The data sets we
study are listed in Table 4.1.

Figure 4.2 summarizes our results for the posterior probability density of the luck and
depth parameters. The axes of the figure indicate the values of 𝛼 and 𝛽 and each cloud is an
estimate of 𝑃(𝛼, 𝛽|A), computed as a kernel density estimate from Monte Carlo sampled
values of 𝛼 and 𝛽. The + signs in the figure represent the mean values of 𝛼 and 𝛽 for each
data set computed directly by averaging the samples.

The figure reveals some interesting trends. Note first that all of the sports and games—
chess, basketball, video games, etc.—appear on the left-hand side of the plot in the
region of low depth of competition, while all the social hierarchies are on the right with
higher depth. We conjecture that the low depth of the sports and games is a result of a
preference for matches to be between roughly evenly matched opponents, as discussed
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Data set 𝛽̂ 𝑛 𝑚 Description Ref.
Sp

or
ts

/g
am

es
Scrabble 0.68 587 23477 Scrabble tournament matches 2004–2008 [4]
Basketball 1.01 240 10002 National Basketball Association games 2015–2022 [79]
Chess 1.17 917 7007 Online chess games on lichess.com in 2016 [3]
Tennis 1.44 1272 29397 Association of Tennis Professionals men’s matches 2010–2019 [119]
Soccer 1.73 1976 7208 Men’s international association football matches 2010–2019 [68]
Video games 1.77 125 1951 Super Smash Bros Melee tournament matches in 2022 [5]

H
um

an Friends 3.54 774 2799 High-school friend nominations [128]
CS depts. 4.25 205 4388 PhD graduates of one department hired as faculty in another [31]
Business depts. 4.36 112 7856 PhD graduates of one department hired as faculty in another [31]

A
ni

m
al

Vervet monkeys 6.01 41 2930 Dominance interactions among wild vervet monkeys [130]
Dogs 8.74 27 1143 Aggressive behaviors in a group of domestic dogs [121]
Baboons 13.19 53 4464 Dominance interactions among a group of captive baboons [55]
Sparrows 22.92 26 1238 Attacks and avoidances among sparrows in captivity [133]
Mice 26.48 30 1230 Dominance interactions among mice in captivity [138]
Hyenas 100.58 29 1913 Dominance interactions among hyenas in captivity [124]

Table 4.1: Data sets in order of increasing depth of competition 𝛽. Here 𝑛 is the number
of participants and 𝑚 is the number of matches/interactions. Further information on the
data sets is given in Appendix D.19.

in Section 4.3.2. For a game to be entertaining to play or watch the outcome of matches
should not be too predictable, but in a sport or league with high depth the average pairing
is very uneven, with the stronger player very likely to win. Low depth of competition
ensures that matches are unpredictable and hence entertaining. In games such as chess,
which have high intrinsic depth, the depth can be reduced by restricting tournaments to
players in a narrow skill range, such as world-class players, and this is commonly done in
many sports and games. We explore this interpretation further in Appendix D.22.

There are no such considerations at play in social hierarchies. Such hierarchies are not,
by and large, spectator sports, and there is nothing to stop them having high depth of
competition. The results in Fig. 4.2 indicate that in general they do, though the animal
hierarchies are deeper than the human ones. A high depth in this context indicates a
hierarchy in which the order of dominance between the typical pair of competitors is clear.
This accords with the conventional wisdom concerning hierarchies of both humans and
animals, where it appears that participants are in general clear about the rank ordering.

Another distinction that emerges from Fig. 4.2 is that the results for sports and games
generally do not give strong support to a nonzero luck parameter. The expected values,
indicated by the + signs, are nonzero in most cases, but the clouds representing the
posterior distributions give significant weight to points close to the 𝛼 = 0 line, indicating
that we cannot rule out the possibility that 𝛼 = 0 in these competitions. For many of the
social hierarchies, on the other hand, there is strong evidence for a nonzero amount of
luck, with the posterior distribution having most of its weight well away from 𝛼 = 0, a
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finding that accords with our intuition about social hierarchies. There would be little point
in having any competition at all within a social hierarchy if the outcomes of all contests
were foregone. If participants knew that every competitive interaction was going to end
with the higher-ranked individual winning and the lower-ranked one backing down, then
there would be no reason to compete. It is only because there is a significant chance of a
win that competition occurs at all.

An interesting counter-example to this observation comes from the two faculty hierar-
chies, which represent hiring practices at US universities and colleges. The interactions
in this data set indicate when one university hires a faculty candidate who received their
doctoral training at another university, which is considered a win for the university where
the candidate trained. The high depth of competition and low luck parameter for these
data sets indicates that there is a pronounced hierarchy of hiring with a clear pecking
order and that the pecking order is rarely violated. Lower-ranked universities hire the
graduates of higher-ranked ones, but the reverse rarely happens.

Figure 4.3 shows a selection of the fitted functions 𝑓𝛼𝛽(𝑠) for five of the data sets. For
each data set we show in bold the curve for the expected values 𝛼̂, 𝛽̂ along with ten other
curves for values of 𝛼, 𝛽 sampled from the posterior distribution, to give an indication of
the amount of variation around the average. We see for example that the curve for the
soccer data set has a shallow slope (low depth of competition) but is close to zero and one
at the limits (low luck). The curve for the mice data set, by contrast, is steep (high depth)
but clearly has limits well away from zero and one (nonzero luck).

4.4.1 Luck and parameter identifiability

Inherent in the view of competition that underlies our model are two different types of
randomness. There is the randomness inherent in the probabilistic nature of the model:
even when one player is better than the other there is always a chance they may lose, so
long as the players’ levels of skill are not too severely imbalanced. But there is also the
randomness introduced by the luck parameter, which applies no matter how imbalanced
the players are, even if one is infinitely better than the other.

In a low-depth situation it can be difficult to distinguish between these two types of
randomness. When depth is low there are few (or no) players who are very good or very
bad, so there are few matches were a good player is unequivocally observed to lose because
of the element of "luck." In mathematical terms, the score function 𝑓 (𝑠) in a low-depth
competition is shallow in its central portion, close to the origin, and moreover it is only
this portion that gets probed by the matches, since there are few contests between badly
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mismatched players. But a score function with a shallow center can be generated either
by a large value of 𝛼 or a small value of 𝛽—the functional forms are very similar either
way.

In practice this means that the values of 𝛼 and 𝛽 suffer from poor identifiability in this
low-depth regime. This is visible in Fig. 4.2 as the long, thin probability clouds of the
sports and games on the left-hand side of the plot. For these there is a set of parameter
value pairs 𝛼, 𝛽 that fall roughly along a curve in the plot and that all have similar posterior
probability, and hence it becomes difficult to pin down the true parameter values. This
phenomenon particularly affects the luck parameter 𝛼, whose spread is so broad in this
regime that we cannot reliably determine whether it is nonzero.

As depth increases, on the other hand, we expect that there will be a larger number
of competitors who are either very strong or very weak, and from the outcomes of their
matches we can determine the level of luck with more certainty. This is reflected in the
distributions on the right of Fig. 4.2, for many of which it is possible to say clearly that 𝛼
is nonzero.

An alternative view of the same behavior is that the long thin probability clouds in the
figure imply the existence of a particular combination of luck and depth that is narrowly
constrained for each data set, and an orthogonal combination that is highly uncertain. In
Appendix D.23, we define a measure of "predictability" of competition in terms of the
amount of information needed to communicate the outcomes of all matches in a data set,
and show that this predictability corresponds precisely to the narrowly defined direction
in the figure, so that predictability can be estimated accurately in all cases, even when
there is considerable uncertainty about the raw parameters 𝛼 and 𝛽.

4.5 Predicting wins and losses

In addition to allowing us to infer the luck and depth parameters and rank competitors,
our model can also be used to predict the outcomes of unobserved matches. If we fit the
model to data from a group of competitors, we can use the fitted model to predict the
winner of a new contest between two of those same competitors. The ability to accurately
perform such predictions can form the basis for consumer product recommendations and
marketing, algorithms for guiding competitive strategies in sports and games, and the
setting of odds for betting, among other things.

We can test the performance of our model in this prediction task using a cross-validation
approach. For any data set A we randomly remove or "hold out" a small portion of the
matches or interactions and then fit the model to the remaining "training" data set. Then
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we use the fitted model to predict the outcome of the held-out matches and compare the
results with the actual outcomes of those same matches.

The simplest version of this calculation involves fitting our model to the training data by
making point estimates of the parameters and scores. We first estimate the expected pos-
terior values 𝛼̂, 𝛽̂ of the parameters given the training data. Then, given these parameter
values, we maximize the posterior probability as a function of s to obtain MAP estimates ŝ
of the scores. Finally, we use the combined parameter values and scores to calculate the
probability 𝑝̂𝑖 𝑗 = 𝑓𝛼̂𝛽̂(𝑠𝑖 − 𝑠 𝑗) that a held-out match between 𝑖 and 𝑗 was won by 𝑖, with
𝑓𝛼𝛽(𝑠) as in Eq. (4.13). Further discussion of the procedure is given in Appendix D.21.

We can quantify the performance of our predictions by computing the log-likelihood
of the actual outcomes of the held-out matches under the predicted probabilities 𝑝̂𝑖 𝑗 . If
𝑊𝑖 𝑗 is the number of times that 𝑖 actually won against 𝑗 then the log-likelihood per game
is

𝑄 =

∑
𝑖 𝑗𝑊𝑖 𝑗 log 𝑝̂𝑖 𝑗∑

𝑖 𝑗𝑊𝑖 𝑗
. (4.20)

This measure naturally rewards cases where the model is confident in the correct answer
(𝑝̂𝑖 𝑗 close to 1) and heavily penalizes cases where the model is confident in the wrong
answer (𝑝̂𝑖 𝑗 close to 0). Note that the log-likelihood is equal to minus the description
length of the data—the amount of information needed to describe the true sequence of
wins and losses in the held-out data given the estimated probabilities 𝑝̂𝑖 𝑗—so models with
high log-likelihood are more parsimonious in describing the true pattern of wins and
losses. (An alternative way to quantify performance would be simply to compute the
fraction of correct predictions made by each model. Some results from this approach are
given in Appendix D.20, and are largely in agreement with the results for log-likelihood.)

To place the performance of our proposed model in context, we compare it against
a basket of other ranking models and methods, including widely used standards, some
recently proposed approaches, and some variants of the approach proposed in this chapter.
As a baseline we compare performance against the standard Bradley-Terry model with
a logistic prior, which is commonly used in many ranking tasks, particularly in sports,
and which we have ourselves used and recommended in the past [100]. We measure
the performance of all other models against this one by calculating the difference in the
log-likelihood per match, Eq. (4.20). The other models we test are:

1. The luck-plus-depth model of this chapter.

2. A depth-only variant in which the parameter 𝛼 is set to zero.
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Model 𝛼 𝛽

Luck-plus-depth inferred inferred
Depth only 0 inferred
Luck only (min. violations) inferred ∞
B-T, max. likelihood 0 100
B-T, logistic prior 0 ≈ 2.56

Table 4.2: Summary of the parameter values of the joint luck-plus-depth model
presented in this paper that correspond to the other models it generalizes. We note that
here the Bradley-Terry (B-T) model with the logistic prior is only approximately
represented by our model with 𝛽 ≈ 2.56, as detailed in Appendix D.22.

3. A luck-only variant in which the parameter 𝛽 is set to ∞, which is equivalent to
minimum violations ranking.

4. The Bradley-Terry model under maximum-likelihood estimation, which is equiva-
lent to imposing an improper uniform prior. Note that maximum-likelihood esti-
mates diverge if a player wins (or loses) all of their matches and to avoid this, in
keeping with previous work [40], we impose a very weak L2 regularization of the
scores which is equivalent to a MAP estimate with Gaussian prior of width 𝜎 = 100.

5. The "SpringRank" model of De Bacco et al. [40], which ranks competitors using a
physically motivated mass-and-spring model.

Apart from the SpringRank model, all of these alternative model are (or at least ap-
proximately are) contained as special cases of the full luck-plus-depth model. Table 4.2
summarizes the parameter values that correspond to these models. This property also
then allows us to compare the Bayesian evidence of these models using the form of the
posterior distribution of parameters in Figure 4.2. As discussed earlier, depending on the
data set different models are excluded based upon whether they meaningfully intersect
with the relevant space of parameters.

The models we can construct and compare in this way are meant to be a representative
selection of ranking models but not comprehensive, excluding for instance models that
incorporate information beyond wins and losses, and multidimensional models [28, 85].
In these predictive cross-validation tests, the proportion of data held out was 20% in all
cases, chosen uniformly at random, and at least 50 random repetitions of the complete
process were performed for each model for each of the data sets listed in Table 4.1.

The results are summarized in Fig. 4.4. The horizontal dashed line in the figure
represents the baseline set by the Bradley-Terry model and the points with error bars
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represent the increase (or decrease) in log-likelihood relative to this level for each model
and data set. The error bars represent the upper and lower quartiles of variation of the
results over the random repetitions. (We use quartiles rather than standard deviations
because the distributions are highly non-normal in some cases.)

We note a number of things about these results. First, the model of this chapter
performs best on our tests for every data set without exception, within the statistical
uncertainty, although the depth-only version of the model is also competitive in many
cases, particularly for the sports and games. The latter observation is unsurprising, since,
as we have said, there is little evidence for 𝛼 > 0 in the games. For the particular case of the
dominance hierarchy of hyenas, the minimum violations ranking is competitive, which is
also unsurprising: as shown in Fig. 4.2 this hierarchy is very deep—the value of 𝛽 is over
100—and hence there is little difference between our model and the minimum violations
ranking. For all the other data sets the minimum violations ranking performs worse—
usually much worse—than our model. (Arrows at the bottom of the figure indicate results
so poor they fall off the bottom of the scale.) The maximum likelihood fit to the Bradley-
Terry model also performs quite poorly, a notable observation given that this is one of the
most popular ranking algorithms in many settings. It even performs markedly worse than
the same Bradley-Terry model with a logistic prior. Finally, we note that the SpringRank
algorithm of [40] is relatively competitive in these tests, though it still falls short of the
model of this chapter and the standard Bradley-Terry model with logistic prior.

As mentioned above, our selection of models excludes multidimensional models, which
have substantially larger parameter spaces and allow for a wider range of behaviors, such
as intransitive competition, and which could in principle provide better fits to the data.
In other tests (not shown here) we found one such model, the blade-chest model of Chen
and Joachims [28], that outperforms our model on four of the animal data sets (dogs,
baboons, sparrows, and hyenas), although it performs poorly in most other cases. This
could suggest the presence of intransitivity in these data sets.

4.6 Conclusion

In this chapter we have studied the ranking of competitors based on pairwise comparisons
between them, as happens for instance in sports, games, and social hierarchies. Building
on the standard Bradley-Terry ranking model, we have extended the model to include
two additional features: an element of luck that allows weak competitors to occasionally
beat strong ones, and a "depth of competition" parameter that captures the number of
distinguishable levels of play in a hierarchy. Deep hierarchies with many levels correspond
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to complex games or social structures. We have fitted the proposed model to data sets
representing social hierarchies among both humans and animals and a range of sports and
games, including chess, basketball, soccer, and video games. The fits give us estimates of
the luck and depth of competition in each of these examples and we find a clear pattern
in the results: sports and games tend to have shallow depth and little evidence of a
luck component, while social hierarchies are significantly deeper and more often have an
element of luck, with the animal hierarchies being deeper than the human ones.

We also tested our model’s ability to predict the outcome of contests. Using a cross-
validation approach we found that the model performs as well as or better than every
other model tested in predictive tasks and very significantly better than the most com-
mon previous methods such as maximum likelihood fits to the Bradley-Terry model or
minimum violations rankings.
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Figure 4.4: Comparative performance of the model of this chapter and a selection of
competing models and methods, in the task of predicting the outcome of unobserved
matches in a cross-validation experiment. Performance is measured in terms of the
log-likelihood (base 2) of the actual outcomes of matches within the fitted model, which
is also equal to minus the description length in bits required to transmit the win/loss
data given the fitted model. Log-likelihoods are plotted relative to that of the standard
Bradley-Terry model with a logistic prior (the horizontal dashed line). Error bars
represent upper and lower quartiles over at least 50 random repetitions of the
cross-validation procedure in each case. The arrows along the bottom of the plot indicate
cases where the log-likelihood is outside the range of the plot.
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Chapter 5

Conclusion

Throughout this thesis, we have leveraged tools from diverse disciplines to model net-
works and enhance our understanding of the complex systems they represent. We ob-
served rich structures of groups and hierarchies and developed methods to measure their
underlying mechanisms. Our work not only provided explanations for observed patterns
but also sought to justify and validate these inferences.

In the Introduction we reviewed examples of the systems we study and noted how
these sources’ properties leave imprints of group and hierarchy structure on networks
of interactions, motivating us to create tools to infer these processes. We described how
insights from statistics, physics, computer science, and machine learning, reviewed in
Appendix A, inform network models to elucidate these structures. Notably, we discussed
the concept of building nested models, integrating multiple plausible models for direct
Bayesian comparisons. This led us to the general configuration model, which facilitates
comparison between Erdős-Rényi and configuration models and measures degree distri-
bution inequality. We also examined stochastic block models (SBM) and Bradley-Terry
(BT) models, fundamental for understanding group and hierarchy structures.

Chapter 2 focused on extending the stochastic block model to better reflect group
structures in networks. The first extension, the general degree-corrected SBM, accommodates
a broader range of degrees within groups than the usual SBM by substituting its Erdős-
Rényi base with the general configuration model, both improving predictions and enabling
the measurement of intra-group degree inequality. The second refinement introduced the
simple and general assortative SBMs, concentrating on nature of the group structure rather
than the degree distribution. By explicitly modeling assortativity, these models overcome
the resolution limit that prevents other methods from identifying small groups. The
general assortative SBM, further captures variations in group connections, revealing that
real network groups are more idiosyncratic than previously assumed, and so outperforms
traditional models by up to 20% in predictive tests.
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Chapter 3 focused on analyzing the outputs of these algorithms, comparing identi-
fied group structures to known groups or other contextual clusterings. We adopted an
information-theoretic framework to compute the mutual information shared between two
labelings of the same set of objects. We identified two major shortcomings in the typical
mutual information. First, that it tends to favor labelings with too many groups because
it neglects a contingency table term in the transmission process. We introduced a more
accurate approximation of this cost and, consequently, a more precise measure of mutual
information. In Section 3.2, we demonstrated the bias introduced by the typical sym-
metric normalization of mutual information and proposed an asymmetric normalization
to address it. We demonstrated the improved measure’s utility by evaluating various
community detection methods on synthetic networks.

In Chapter 4, we shifted our focus to analyzing hierarchies in directed networks. By
expanding on the traditional Bradley-Terry model, we quantified both the luck inherent
in a hierarchy—where even the least capable participant might beat the best—and the
hierarchy’s depth, the overall number of levels of play or strictness of a ranking. Applying
this model to real datasets, we observed significant variations across different contexts.
Sports and games display competitive low-depth hierarchies, animal social hierarchies
show high strictness, and human hierarchies generally fall in between. We also found that
only animal hierarchies have have an appreciable element of luck. Utilizing this richer
model, we achieved a more detailed understanding of these systems, enhancing both
predictive accuracy and parsimonious modeling.

Although we have advanced the simple models we began the thesis with into a more
comprehensive and descriptive picture, there are still clear areas for improvement. For one,
our models do not capture the local structure of networks, for example triadic closure: the
tendency for two friends of a person to also be friends with each other. Such local behaviors
can profoundly influence the system, affecting processes like disease transmission along
edges. Recent tools like hyperbolic random graphs [74] and loopy belief propagation [22]
incorporate these behaviors but mainly focus on getting this local structure correct. A
promising direction for future work could be to develop models that integrate non-trivial
local structures with the global properties targeted in this thesis. Additionally, the models
we have described focus on relatively simple networks, lacking dynamic information or
additional contexts provided by weighted graphs or hypergraphs. Extending this thesis’s
techniques to these more decorated networks could enhance understanding of how context
and structure interrelate.

Overall, this thesis has demonstrated the broad applicability of network science and
advanced two crucial tools in the field. By sharpening these techniques we hope to
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facilitate future endeavors to understand complex systems.
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Appendix A

Supplementary Background Material

In this thesis we invoke tools across many disciplines to probe patterns of groups and
hierarchies in network data. While these methods are particularly useful to network sci-
ence, they apply to a far more general context. As such in this appendix we review these
subjects by broadening our focus to consider generic data sets and toy models. Over
Appendices A.1 to A.4 we consider the simple example of flipping a coin from the per-
spectives of statistics, physics, computer science, and machine learning in turn. Figure A.1
contains cartoons of these varied perspectives on the simple system. Analogously, Fig-
ure A.2 illustrates common examples of where these same concepts appear within network
science and this thesis.

A.1 Statistical inference

Suppose we perform a simple experiment and record whether a two-sided coin lands
"heads" or "tails" over 𝑛 flips. Before the experiment begins we might hypothesize that we
hold a fair coin: that all coin flips are independent and result in heads with probability 𝑝 =

0.5 and tails with probability 1 − 𝑝 = 0.5. This natural assumption defines a model by
assigning a likelihood of observing any particular sequence of heads and tails over the 𝑛
trials

𝑃(
𝑛 flips︷  ︸︸  ︷

H, ..., T |𝑝 = 0.5) = 1
2𝑛 . (A.1)

Although all possible sequences of 𝑛 outcomes are equally likely to appear under this
model, certain observations may lead us to doubt our initial hypothesis. Suppose every
coin flip we observe lands on heads. Although a single heads does not raise suspicion, 10
heads in a row start to be quite surprising at a probability of ∼ 0.1%. And after 100 fair
heads in a row we may start to question our place in the universe. The question arises:
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Figure A.1: Schematics of four perspectives on coin flips. (a) Using statistics to infer the
probability of landing heads ("H"). (b) Physical interpretation where tails ("T") is more
likely as a lower "energy" state than heads. (c) Encoding the sequence of flips as a binary
string to quantify the complexity of the sequence in bits. (d) Cross-validation of a model
trained on a subset of the data against a withheld testing set.
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Figure A.2: Example applications of the tools discussed in this section to network
science. (a) Statistical inference of community structure of a given network, as in
Section 1.2.3. (b) Markov Chain Monte Carlo to explore the posterior distribution (energy
landscape) of possible community structures of a network, as in Appendix B.6. (c)
Information theoretic measures of the information content and similarity of two possible
network community structures, as in Chapter 3. (d) Prediction of unobserved links in a
network, as in Figure 2.4.
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how many heads should we observe before abandoning our initial conjecture? And if the
coin is not fair, what is its nature? Statistics provides many frameworks for approaching
these questions.

In the frequentist approach our initial assumption of fairness is called a null model (or
"null hypothesis") which our experiment may then "reject." In this picture we define a
test statistic that captures some surprising aspect of our observed data, in this case the
unusually large number of heads 𝑛𝐻 = 𝑛 observed. We then compute the likelihood
that the null model could produce a result with a test statistic at least as extreme as that
observed, known as the p-value. If this p-value is small it is unlikely the null model alone
could generate an observation similar to ours. This improbability suggests our model is
lacking and serves as grounds to "reject" it in favor of some alternative model more likely
to have produced our observation.

In linear regression, these p-values are often reported to reject the possibility of a slope
of 0, of no relation between two variables. In network science, simple null models are
likewise used to demonstrate that some observed structural feature like community or
hierarchy requires a richer model to reproduce, such as those discussed in Section 1.2.

For a fair coin the probability of observing 𝑛𝐻 heads out of 𝑛 trials is given by the
binomial distribution

𝑃(𝑛𝐻 |𝑝 = 0.5) = 1
2𝑛

(
𝑛
𝑛𝐻

)
. (A.2)

The p-value, the chance of observing some number of heads 𝑛′𝐻 greater than or equal
to 𝑛𝐻 , is then

𝑃(𝑛′𝐻 ≥ 𝑛𝐻 |𝑝 = 0.5) = 1
2𝑛

∑
𝑛′𝐻≥𝑛𝐻

(
𝑛
𝑛′𝐻

)
. (A.3)

As shown in Figure A.3, over 10 fair coin flips we expect an average of 5 heads in this
model although small fluctuations such as 4 or 6 heads are also common. More lopsided
outcomes are increasingly unlikely, so that the p-values of observing larger 𝑛𝐻 approach
zero.

A smaller p-value yields a more statistically significant rejection of the null hypothesis.
A threshold of 𝑃 < 0.05 is often used as a minimum standard, in which case we would
reject the hypothesis of a fair coin in our experiment if 9 or 10 of the coin flips land heads.
This demarcation at 0.05 is arbitrary; however small there is always some chance that a
genuine fair coin produced an observation as unusual as the one made. We would expect
to obtain a p-value less than 0.05 and so reject the model in 1 of 20 experiments conducted
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Figure A.3: Distribution of the number of heads 𝑛𝐻 observed over 𝑛 = 10 flips of a fair
coin and the resulting p-value probabilities of observing at least 𝑛𝐻 heads. The region
where the p-value is less than 0.05 is plotted in gray, a threshold to reject the null
hypothesis of a fair coin.

with even a truly fair coin. The choice of p-value threshold reflects a tolerance for this
possibility that our rejection is the result of chance rather than a genuine signal.

If such significance testing has led us to doubt that the coin is fair, we may consider an
alternative hypothesis. We could instead model a biased coin whose flips are still indepen-
dent but land heads with some fixed probability 𝑝 ∈ [0, 1] and tails with probability 1− 𝑝.
Under this assumption the likelihood of a sequence with 𝑛H heads and 𝑛T = 𝑛 − 𝑛H tails
is

𝑃(
𝑛H heads︷  ︸︸  ︷
H, ..., T |𝑝) = 𝑝𝑛H(1 − 𝑝)𝑛−𝑛H . (A.4)

This defines a nested model by generalizing the fair coin as the special case 𝑝 = 0.5. Thus the
original fair coin model can be directly compared against other choices of the parameter 𝑝
which each represent possible coins of varying levels of bias towards landing heads or
tails. Before the experiment begins we imagine all these coins are possible and aim to infer
the "true" value of 𝑝 realized by our coin based on the observations.

To apply this model suppose that after 10 trials we observe a sequence

(H,H, T, T,H, T, T,H, T, T), (A.5)

now a mixture of 𝑛H = 4 heads and 𝑛T = 6 tails. We fit the model likelihood Eq. (A.4)
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to this data by finding the value of 𝑝 which would maximize the probability that our
observed sequence occurred. For this model this is simply equal to the observed fraction
of heads

𝑝̂ML =
𝑛H
𝑛

(A.6)

where the "ML" subscript indicates that this is the maximum likelihood estimate of 𝑝. Our
sequence of observations (A.5) gives the estimate 𝑝̂ML = 0.4.

Although this 𝑝̂ML is the single parameter value most likely to have generated our
observations, it is unclear how seriously we should take the estimate. If the coin was
in fact fair, 𝑝 = 0.5, the slight imbalance towards tails we observe could very well be a
random fluctuation in our small sample size as seen in Figure A.3. In our earlier language
the p-value is not small enough to warrant rejecting the null hypothesis of a fair coin. To
conclude that the one "true" value of 𝑝 is 0.4, for example to predict that 400 of the next
1000 flips will be heads, would likely overfit the data. As a more extreme example if we
only observe a single coin flip which happens to land heads, the maximum likelihood
estimate would conclude that 𝑝̂ML = 1 and thus that the coin will always land heads.
There should be uncertainty in our conclusions, particularly when they are based on such
little evidence.

By adopting a Bayesian perspective we can naturally represent this uncertainty in our
inferences. In this framework we critically never exclude the possibility of any potential
parameter value. Rather we infer from the data that some parameter values are more
probable than others. At each stage of the experiment we represent our belief of likely
values as a distribution over all possibilities rather than a single best-fit point.

Before considering the data we define a prior distribution (or "prior") over the parameters
that reflects our initial assumptions. Depending on the context of our experiment we may
have quite different expectations that will rightfully influence the conclusions we draw.
For example if we use a standard legal tender coin we may hesitate to conclude that the
coin is notably biased, even after observing 10 heads in a row. However, if the flips instead
involve either a hypothetical or peculiar-looking coin there may be more room for doubt.
The form of the prior distribution precisely specifies our initial assumptions.

For our example we will adopt a prior assumption that the coin is likely to be fair or
approximately fair. Although a physical coin could conceivably be as biased as 𝑝 = 0.4,
we expect a balanced 𝑝 = 0.5 to be far more likely. To represent this we define a prior
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(b) likelihood �(H, ..., T|�) (c) prior �(�)(a) posterior �(�|H, ..., T)

∝ ×

0 trials
10 trials (4 heads, 6 tails)
100 trials (40 heads, 60 tails)

� � �

Figure A.4: (a) Posterior distributions of the parameter 𝑝 after observing 0 coin flips
(a.k.a. prior distribution), 10, and 100 coin flips. In each experiment 40% of trials are
heads, a ratio marked by the vertical line in each plot. The posterior distributions are
proportional to the product of the likelihood (b) and prior (c) over 𝑝. As more
observations are made the posterior is increasingly informed by the model likelihood.

distribution over possible 𝑝 peaked at 𝑝 = 0.5, particularly a beta distribution 𝑝 ∼ 𝐵(20, 20)

𝑃(𝑝) = 41!
20!20!𝑝

20(1 − 𝑝)20, (A.7)

plotted in Figure A.4c. This particular form of the prior and the number 20 are arbitrarily
chosen for this example, although they represent a reasonable assumption for this scenario.

As we observe coin flips we update these prior beliefs to reflect new data and arrive
at a new posterior distribution of likely parameter values. Using Bayes’ law this posterior
distribution is proportional to the product of the model likelihood and the initial prior
distribution as

𝑃(𝑝|H, ..., T) ∝ 𝑃(H, ..., T|𝑝)𝑃(𝑝). (A.8)

This form ensures that when no data is observed the posterior distribution is equal to
the prior assumption 𝑃(𝑝). As flips are recorded the influence of the prior distribution
wanes as the posterior is dominated by the model likelihood 𝑃(H, ..., T|𝑝). Figure A.4
demonstrates this shift in the posterior distribution (a) from the prior (c) to the likelihood
(b) after making 0, 10, and 100 observations at a ratio of 40% heads. As more observations
are made with an empirical probability of 𝑝 = 0.4, our posterior distribution becomes in-
creasingly concentrated around that belief. We must however observe sufficient evidence
to overcome the strength of our initial assumptions before coming to that conclusion with
certainty.
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The width and form of the posterior distribution give a full picture of the uncertainty
of our the inference. Although the posterior distribution in Figure A.4a is tightly concen-
trated around a probability 𝑝 ∼ 0.4 after observing 100 flips, we retain some ambiguity
if the parameter might deviate slightly from that peak. Nonetheless it is often useful to
report the single choice of parameter most favored by the posterior distribution, known
as the maximum a posteriori (MAP) estimate. For our example and choice of prior Eq. (A.7)
this is

𝑝̂MAP =
𝑛𝐻 + 20
𝑛 + 40 . (A.9)

The earlier interplay between the prior and likelihood is present in this estimate. When
no coin flips are observed we obtain the prior assumption 𝑝̂MAP = 0.5. As the number
of observations 𝑛 increases, this Bayesian estimate approaches the frequentist maximum
likelihood estimate, 𝑝̂MAP → 𝑛𝐻

𝑛 = 𝑝̂ML.
To complete Bayes’ law and fully specify the posterior distribution we normalize

Eq. (A.8) as

𝑃(𝑝|H, ..., T) = 𝑃(H, ..., T|𝑝)𝑃(𝑝)
𝑃(H, ..., T) (A.10)

where

𝑃(H, ..., T) =
∫ 1

0
𝑃(H, ..., T|𝑝)𝑃(𝑝)𝑑𝑝 (A.11)

is the evidence (or "marginal likelihood") of the model. This evidence can be interpreted
as the probability of arriving at the observations H, ..., T through the two stage process
of first choosing a parameter 𝑝 from the prior 𝑃(𝑝) then generating the data from the
model likelihood 𝑃(H, ..., T|𝑝). By integrating over all possible parameters 𝑝, the Bayesian
evidence is equal to the total probability that a model generates the observed data from
our prior assumptions. A cartoon of this generative process is given in Figure A.5.

This is a useful interpretation for comparing competing models of a data set to perform
model selection. A model with higher Bayesian evidence is more likely to have produced
the observed data, and therefore has reason to be preferred. As an application we can
compare the strict fair coin model described in Eq. (A.1) to the Bayesian model with the
more permissive prior Eq. (A.7) on the observations (A.5) of 4 out of 10 heads. The fair
coin model assumes that the coin is exactly fair regardless of the observed evidence, an
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Figure A.5: Schematic of the full generative process of the fair and biased coin models. A
parameter value 𝑝 is first drawn from the appropriate prior 𝑃(𝑝), represented by the
thicknesses of the top gray arrows to example parameter values 𝑝 = 0.4, 0.5, and 0.6.
This choice of parameter then generates the observed data according to the model
likelihood 𝑃(H, ..., T|𝑝), represented by the weights of the colored arrows to the example
observations of all tails, a mixture, and all heads. Lastly we compute the model evidence
of each observation by summing over all generative paths leading to that outcome. For
some data the fair model performs better while for others the biased coin is preferred.
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assumption that can be represented with a Dirac delta function prior

𝑃fair(𝑝) = 𝛿(𝑝 − 0.5). (A.12)

In this case integrating over the prior simply evaluates at 𝑝 = 0.5 to give the model
evidence

𝑃fair(H, ..., T) =
∫ 1

0
𝑃(H, ..., T|𝑝)𝑃fair(𝑝)𝑑𝑝 =

1
2𝑛 ≈ 0.097% (A.13)

that the fair coin model would generate our sequence. In comparison the model evidence
with the prior Eq. (A.7) is

𝑃gen(H, ..., T) =
∫ 1

0
𝑃(H, ..., T|𝑝)𝑃(𝑝)𝑑𝑝 =

41!(20 + 𝑛𝐻)!(20 + 𝑛𝑇)!
(41 + 𝑛)!20!20!

≈ 0.091%, (A.14)

and so this more general model is overall (slightly) less likely to have generated our
observations. The ratio of such evidences is known as the Bayes factor between two
models. Here the ratio

𝑃gen(
10 flips︷  ︸︸  ︷

H, ..., T)
𝑃fair(H, ..., T) ≈ 0.93 (A.15)

less than 1 indicates that the more complex model is not justified over the fair coin. Note
that the Bayesian evidence has naturally penalized over-parametrization. Although the
choice of parameter 𝑝 = 0.4 does a better job than the fair coin in isolation, it has a
higher model likelihood, this peak must be weighed against all possible other values of
the parameter which in this case offset that advantage.

Had we instead observed 40 heads out of 100 flips, the Bayes factor flips to

𝑃gen(
100 flips︷  ︸︸  ︷
H, ..., T)

𝑃fair(H, ..., T) ≈ 2.25 (A.16)

as the more flexible model is now preferred in the presence of increased evidence that
the coin is not quite fair. Depending on the particular data set being considered we may
prefer one model or the other.

In fact, given two models 𝑀1 and 𝑀2, there will always be data sets that prefer one
model over the other. No model can be strictly better than another across all possible

150



observations. To see this, consider the Bayesian evidences 𝑃1(s) and 𝑃2(s) of the two
models. Both of these are normalized distributions over the possible observations that a
model can generate. If we suppose that the Bayesian evidence 𝑃1(s) is greater than 𝑃2(s)
for all observations s, both distributions can not be simultaneously normalized to 1 as

1 =
∑
s

𝑃1(s) >
∑
s

𝑃2(s) ≠ 1. (A.17)

There therefore exists both an observation s1 that favors model 1 and an observation s2

that favors model 2. In this spirit, this inherent trade-off is sometimes known as the
"no free lunch" theorem [104]. When building models and performing model selection
between them, we hope that "realistic data sets" fall within the preferred domain of our
models.

When considering a data set, we can also compute Bayes factors like Eq. (A.16) by taking
advantage of the nested structure of our model. Since the general model is equivalent to
the fair coin model at the value 𝑝 = 0.5, the Bayes factor can be written in terms of the
posterior distribution at that value. Explicitly we have

𝑃(𝑝 = 0.5|H, ..., T) = 𝑃(H, ..., T|𝑝 = 0.5)𝑃(𝑝 = 0.5)
𝑃(H, ..., T) =

𝑃fair(H, ..., T)
𝑃gen(H, ..., T) . (A.18)

Because of this, if our posterior distribution in the general model is meaningfully peaked
at 𝑝 = 0.5, the evidence of the fair coin is greater than that of the general coin. If the
posterior excludes 𝑝 = 0.5, the reverse is true.

This formulation is useful since it is often difficult in practice to compute the absolute
Bayesian evidence of a model as it involves integrating over the high dimensional space of
all possible parameter values. If we define a nested model, however, we can approximate
the posterior distribution using Monte Carlo methods discussed in Section A.2 relatively
easily and so compute these Bayes factors and compare models.

We apply this central trick to a range of cases across Chapters 2 and 4. In each example
we start with a simple model then generalize it within this Bayesian framework. By
doing this we can check both whether this generalization is warranted and, if so, measure
the size of the new effect, just like we infer 𝑝 in the biased coin model. By stating and
incorporating our prior expectations into the inference process, a Bayesian framework
enables us to handle uncertainty and validate our models in a graceful manner.
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A.2 Statistical physics

The earlier picture of probability and inference can be usefully cast in the language of
physics and energy. By leveraging this correspondence, we can import analytic and
computational tools from physics to tackle statistical questions. In this section, we will
define a physical model of coin flips and demonstrate its equivalence to the statistical
model discussed earlier. We will then explore how this perspective motivates alternative
types of models and inference techniques.

Physics often describes systems in terms of a configuration space of possible states. In the
coin flip example, the state of the system (or "configuration") is the sequence of 𝑛 observed
outcomes. We represent this configuration as a vector s, where each entry 𝑠𝑖 = 1 indicates
that flip 𝑖 = 1, ..., 𝑛 landed heads, and 𝑠𝑖 = 0 represents tails. The configuration space of
coin flips is thus comprised of all possible sequences of 𝑛 flips, forming all binary vectors
of length 𝑛.

This notation elicits the Ising model fundamental to statistical mechanics. The configu-
rations of this model consist of atomic "spins" that reside at one of 𝑛 "sites," each in either
its excited state 𝑠𝑖 = 1 or ground state 𝑠𝑖 = 01. We assign the excited state an energy of 1 and
the ground state energy 0, as shown in Figure A.6. The total energy of the system, referred
to as the Hamiltonian, is then the number of excited states (or heads)

𝐻(s) =
𝑛∑
𝑖=1

(
0𝛿𝑠𝑖0 + 1𝛿𝑠𝑖1

)
= 𝑛𝐻 . (A.19)

A more general Ising model would include coupling energies between neighboring spins,
but we omit them here to maintain independent coin flips. In Appendix A.5 we discuss
the deep connections between the more general interacting Ising model and statistical
models of network group structure.

In an isolated system the energy Eq. (A.19) is always conserved, a fundamental law
of physics. Although changes in individual spin states can occur, they must be counter-
balanced by changes in other spins to maintain the "global" energy of the system. Let 𝐸
be this constant energy of the system, so that only configurations s where 𝐻(s) = 𝐸 are
permitted, cases with 𝑛𝐻 = 𝐸 excited states. The number of possible system configura-
tions (also known as microstates) that satisfy this condition is then the number of ways to

1The two values of an Ising model spin are typically denoted as 𝑠𝑖 = 1 for the "up" state and 𝑠𝑖 = −1 for
the "down" state, in line with the magnetic dipole moments they physically represent, although the choice
of basis does not alter the underlying physics.
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Figure A.6: Physical interpretation of coin flips. Heads ("H") have energy 𝐸 = 1 while
tails ("T") have energy 𝐸 = 0, so that the overall energy of the configuration s is equal to
the number of observed heads, 𝐻(s) = 𝑛𝐻 .

arrange the 𝑛𝐻 = 𝐸 excited states among the 𝑛 sites,

Ω(𝐸) =
(
𝑛
𝐸

)
. (A.20)

Statistical mechanics fundamentally postulates that when a system is in equilibrium, all
these microstates of the same total energy are equally likely to appear. This assumption
defines equilibrium statistical mechanics, the framework we adopt in this thesis. Under
this postulate the probability of observing any specific configuration s is therefore

𝑃(s|𝐸) =
(
𝑛
𝐸

)−1
. (A.21)

This uniform distribution over all configurations of a fixed energy is known as the micro-
canonical ensemble. As a distribution over possible sequences of coin flips, it can also be
interpreted as a microcanonical model where the continuous local probability of heads 𝑝
has been replaced by the discrete global number of heads 𝑛𝐻 = 𝐸.

Many of the statistical models we consider in this thesis are framed in this microcanoni-
cal form, where the "parameters" are globally observed quantities. While this formulation
may not be well-suited for the coin flip example, where we have little reason to expect a
"conservation of heads," it arises in other statistical settings where certain properties are
conserved across random realizations. For instance, in a network of sports matches the
total number of games played each season remains constant each year, even though the
pattern of connections among teams changes. In Section 1.2, we explore further examples
and observe how many network models can be written microcanonically.

To return to the independent coin flip model we must broaden the physical picture.
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Realistically most physical systems are not truly isolated but rather exchange energy with
their environment in a setting known as the canonical ensemble. In physical language the
original system is now a subsystem in equilibrium with a large thermal bath. Although the
combined system of both the subsystem and the thermal bath must still conserve overall
energy, our subsystem of interest can gain and lose energy to the thermal bath.

Figure A.7 illustrates this set up for the coin flip example. Let s̃ represent the config-
uration of the thermal bath, containing 𝑛̃ spins and energy 𝐸̃ = 𝐻(s̃) which counts the
number of excited states in the bath. Including our subsystem s, the full system (s, s̃)
then has 𝑛 + 𝑛̃ total spins and total energy 𝐸𝑇 = 𝐻(s, s̃) = 𝐸 + 𝐸̃. Since this total energy is
conserved, the full system (s, s′) is uniformly distributed according to the microcanonical
ensemble Eq. (A.21) of 𝐸𝑇 excited states on 𝑛 + 𝑛̃ sites,

𝑃(s, s̃|𝐸𝑇) =
(
𝑛 + 𝑛̃
𝐸𝑇

)−1
. (A.22)

Although each pair (s, s′) with total energy 𝐸𝑇 is equally likely, certain subsystem
energies 𝐸 are more likely than others. Figure A.7 demonstrates this effect with two
example configurations. In panel (a) the excited states ("H") are all contained within
the thermal bath s̃, meaning that the subsystem s has its lowest possible energy 𝐸 = 0
and the thermal bath has the full energy 𝐸𝑇 . In panel (b) the excited states are evenly
distributed between the subsystem and the bath, and the subsystem has absorbed some
energy from the bath. Across all possible configurations of the joint subsystem-bath
system, imbalanced distributions like (a) are less common than balanced ones (b). Random
configurations of the overall ensemble are therefore likely to be balanced. As a result, if
our subsystem begins in its ground state (a) it will tend to thermalize into a configuration
like (b) with evenly distributed excited states.

To quantify this tendency, we can count the number of overall subsystem-bath config-
urations (s, s̃) with subsystem energy 𝐸. As in Eq. (A.20), there are Ω(𝐸) microstates of
the subsystem s all share the same energy 𝐸. We refer to this collection of microstates
as a macrostate of the subsystem with energy 𝐸. Figure A.8 illustrates this grouping of
subsystem microstates into macrostates by energy. Macrostates that contain more mi-
crostates, those with higher Ω(𝐸), are naturally observed more often. We can likewise
construct macrostates of the thermal bath s̃ at energies 𝐸̃. Considering the number of
ways to arrange the 𝐸̃ excited states among the 𝑛̃ sites of the bath, there are

Ω̃(𝐸̃) =
(
𝑛̃
𝐸̃

)
(A.23)
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Figure A.7: Thermalization of a subsystem (of coin flips) in contact with a thermal bath.
In panel (a) all excited states ("H") are contained in the bath, an unusual configuration
with overall entropy 𝑆(𝐸) + 𝑆̃(𝐸̃) = 8.77. Panel (b) has a more typical, even arrangement
of the excited states, reflected in the higher total entropy 𝑆(𝐸) + 𝑆̃(𝐸̃) = 10.82. If the
subsystem begins in the ground state (a) it will thus likely thermalize to the equilibrium
(b).

microstates in the bath macrostate of energy 𝐸̃. In many settings the full microstate is
not observable, for instance the precise position and velocity of each molecule of a gas.
In these settings the macrostate summarizes the pieces of physically relevant information
that can be observed, such as the energy or pressure.

Since the subsystem macrostate hasΩ(𝐸)microstates and the bath macrostate has Ω̃(𝐸̃),
there are Ω(𝐸)Ω̃(𝐸̃) unique pairs (s, s̃) with subsystem energy 𝐸 and bath energy 𝐸̃ =

𝐸𝑇 − 𝐸. Since each pair is equally likely to appear in the overall microcanonical ensemble,
we thus observe subsystem energy 𝐸 with probability

𝑃(𝐸|𝐸𝑇) ∝ Ω(𝐸)Ω̃(𝐸̃)
∝ Ω(𝐸)Ω̃(𝐸𝑇 − 𝐸). (A.24)

These macrostate multiplicities can also be written using macrostate entropy, defined as
the logarithm2

𝑆(𝐸) = logΩ(𝐸) = log
(
𝑛
𝐸

)
, or 𝑆̃(𝐸̃) = log Ω̃(𝐸̃) = log

(
𝑛̃
𝐸̃

)
. (A.25)

2More generally defined as 𝑆 = 𝑘𝐵 logΩ where 𝑘𝐵 ≈ 1.38 J/K is the Boltzmann constant. The units of
this constant are due to the thermodynamic relation Eq. (A.29).
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Figure A.8: Example microstates of the subsystem s grouped into macrostates by
energy 𝐸. Only one microstate has 𝐸 = 0 while five microstates share 𝐸 = 1, meaning that
the higher energy macrostate has higher entropy 𝑆(𝐸). Although each microstate is
equally likely, the higher entropy macrostate is more likely to be observed.

The energy distribution then depends on the overall entropy 𝑆(𝐸) + 𝑆̃(𝐸̃) as

𝑃(𝐸|𝐸𝑇) ∝ 𝑒𝑆(𝐸)+𝑆̃(𝐸̃). (A.26)

Configurations with higher total entropy are therefore more likely to appear, as calculated
in Figure A.7. This tendency to observe higher entropy states is the content of the 2nd law
of thermodynamics: that the entropy of the universe cannot decrease. On such large scales
differences in entropy are large, and the probability Eq. (A.26) approaches a certainty, a
law of physics.

We can similarly compute the distribution of subsystem configurations s, not just of
its energy 𝐸. If we fix the subsystem microstate, valid pairs (s, s̃) correspond to bath
microstates s̃ among the Ω̃(𝐸̃) configurations of the remaining energy. As each pair is
equally probable, the subsystem is distributed as

𝑃(s|𝐸𝑇) ∝ Ω̃(𝐸̃)
∝ 𝑒 𝑆̃(𝐸̃). (A.27)

Unlike the uniform, microcanonical ensemble of the subsystem, certain configurations are
now more or less likely based on the entropy of the surrounding bath.

In this picture the canonical ensemble is defined by the limit 𝑛̃ → ∞ of a large ther-
mal bath that can effectively absorb subsystem fluctuations. We further fix the average
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energy 𝑝 = 𝐸̃/𝑛̃ of the thermal bath in this limit, which corresponds to a fixed density of
excited states. If we Stirling approximate the binomial coefficient Eq. (A.25), we find the
bath’s entropy 𝑆̃(𝐸̃) is proportional to its energy (up to a constant 𝐶) as

𝑆̃(𝐸̃) = 𝛽𝐸̃ + 𝐶, 𝛽 = log
1 − 𝑝
𝑝

. (A.28)

This constant of proportionality 𝛽 is known as the inverse temperature and relates changes
in the bath energy 𝐸̃ to changes of entropy 𝑆̃ as

𝜕𝑆̃

𝜕𝐸̃
= 𝛽 =

1
𝑇
, (A.29)

aligning with the usual thermodynamic definition3 of the temperature𝑇. We will typically
assume this temperature is positive and so added energy increases the entropy, although
negative temperatures are possible in certain cases such as population inversion in laser
physics or the coin flips when 𝑝 > 0.5.

Comparing to Eq. (A.27), we then see that the probability of observing any given
subsystem s in this canonical ensemble is

𝑃(s|𝛽) ∝ 𝑒𝛽𝐸̃ ∝ 𝑒−𝛽𝐸

∝ 𝑒−𝛽𝐻(s), (A.30)

where we have used that the total energy 𝐸𝑇 = 𝐸 + 𝐸̃ is conserved. In fact, by similar
arguments any system s in thermal equilibrium with a large bath at inverse temperature 𝛽

follows this same Boltzmann distribution (or "Gibbs distribution") 𝑃(s) ∝ 𝑒−𝛽𝐻(s), which
may itself taken as the definition of the canonical ensemble of s. When 𝑇 = 0, 𝛽 → ∞, the
subsystem is stuck in its ground state with the smallest possible energy 𝐻(s). This aligns
with the usual tendency of a physical system towards smaller energy, as a ball rolls down a
hill. As the temperature increases and𝑇 → ∞, 𝛽 = 0, however, the Boltzmann distribution
becomes uniform and every subsystem microstate is equally likely independent of its
energy.

At finite 𝛽 > 0 between these extremes, the typical thermal configuration may not
be the ground state, even though that is the single most likely microstate. Rather, the
subsystem is likely to be found in some other macrostate with higher entropy 𝑆(𝐸) as

3This definition ensures that if two thermal baths at temperatures 𝑇1 > 𝑇2 > 0 are brought into contact
energy will flow from the higher temperature bath to the lower temperature bath to increase the overall
entropy, in keeping with the 2nd law of thermodynamics.
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seen in Figure A.7. Although each individual microstate of this macrostate has smaller
probability than the ground state, their greater number makes their macrostate collectively
more likely to be observed. This effect can be quantified by revisiting Eq. (A.26) for the
distribution of energy 𝐸. Since the large bath’s entropy is proportional to its energy we
have

𝑃(𝐸|𝐸𝑇) ∝ 𝑒𝑆(𝐸)+𝑆̃(𝐸̃) ∝ 𝑒𝑆(𝐸)+𝛽𝐸̃

∝ 𝑒𝑆(𝐸)−𝛽𝐸 ∝ 𝑒−𝛽𝐹(𝐸) (A.31)

where we have defined the free energy

𝐹(𝐸) = 𝐸 − 𝑇𝑆(𝐸). (A.32)

The most likely energy 𝐸 to be observed is therefore the minimum of this free energy.
Depending on the temperature 𝑇, this may no longer be the ground state energy due to
the influence of the entropy 𝑆(𝐸).

To complete the description of the canonical ensemble, we normalize the Boltzmann
distribution as

𝑃(s|𝛽) = 1
𝑍(𝛽) 𝑒

−𝛽𝐻(s), 𝑍(𝛽) =
∑
s

𝑒−𝛽𝐻(s) (A.33)

with the partition function 𝑍(𝛽), a quantity which tells us much about the system in its
own right. For example, its logarithmic derivative

−𝜕𝛽 log𝑍(𝛽) = − 1
𝑍(𝛽)𝜕𝛽

∑
s

𝑒−𝛽𝐻(s)

=
1

𝑍(𝛽)
∑
s

𝐻(s)𝑒−𝛽𝐻(s)

= ⟨𝐸⟩ (A.34)

yields the average energy ⟨𝐸⟩ under the Boltzmann distribution.
If we normalize the Boltzmann distribution of our coin flip system with the partition
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function 𝑍(𝛽) = (1 − 𝑝)−𝑛 , we obtain

𝑃(s|𝑝) = 1
𝑍(𝛽) 𝑒

−𝛽𝐻(s)

=
1

(1 − 𝑝)−𝑛 𝑒
− log

(
1−𝑝
𝑝

)
𝑛𝐻

= 𝑝𝑛𝐻 (1 − 𝑝)𝑛−𝑛𝐻 (A.35)

which we recognize as the model likelihood Eq. (A.4) for biased coin flips with probabil-
ity 𝑝. In this correspondence, we can check that the average energy relation Eq. (A.34) of
the physical system indeed recovers the expected number of heads

⟨𝐸⟩ = −𝜕𝛽 log𝑍(𝛽) = 𝑝𝑛. (A.36)

Unlike the microcanonical ensemble, the number of observed heads 𝑛𝐻 = 𝐸 can now
thermally fluctuate about this expectation via exchange with its surroundings in a manner
that exactly reproduces independent coin flips.

This example motivates us to draw a broader analogy between statistics and physics. In
Eq. (A.35) we described a physical system that reproduces the biased coin flip likelihood,
the same distribution of flip outcomes given a fixed parameter 𝑝. Often, however, we are
interested in the reverse inference problem of understanding the space of likely parameter
values 𝑝 given a particular observation. Suppose we have a generic model 𝑃(x|θ) of
data x with parameters θ. As discussed in Appendix A.1, the posterior distribution of
parameters inferred from data x is by Bayes’ law

𝑃(θ|x) = 𝑃(x|θ)𝑃(θ)
𝑃(x) . (A.37)

For a fixed observation x, the corresponding physical system is defined by the Hamil-
tonian

𝐻(θ) = − log𝑃(x|θ) (A.38)

over the configuration space of possible parameters θ. If we assume a uniform prior 𝑃(θ) =
1, the posterior distribution over parameters is proportional to the Boltzmann distribution
of this system at unit temperature 𝛽 = 1

𝑃(θ|x) ∝ 𝑃(x|θ) ∝ 𝑒−𝐻(θ). (A.39)
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In fact, if we normalize the Boltzmann distribution as

𝑃(θ|x) = 1
𝑍(1) 𝑒

−𝐻(θ), (A.40)

the partition function 𝑍(1) is equal to the Bayesian evidence

𝑍(1) =
∑
θ

𝑒−𝐻(θ) =
∑
θ

𝑃(x|θ)𝑃(θ) = 𝑃(x). (A.41)

Through this correspondence we can explore the posterior distribution of any Bayesian
model by simulating the behavior of the analogous physical system.

This equivalence highlights a subtle philosophical difference between the physical
perspective and the common statistical view of these problems. In statistics, particularly
in frequentist treatments, we often consider and report the single best-fit parameter of
a model that maximizes 𝑃(θ|x). Physically, this is akin to identifying the ground state
configuration with the lowest energy 𝐻(θ).

Yet in physics, we are usually more interested in the typical behavior of the system
across the entire thermal ensemble rather than the nature of the single most probable
microstate. As shown in Figure A.7, there may be many other less likely yet more entropic
configurations that dominate the overall distribution when taken together. In common
glass, for example, although the ground state would be an ordered crystalline structure,
thermal fluctuations make the typical configuration amorphous, giving the material its
signature uniform transparency. Keeping with this perspective, in this work we will
consider the full posterior distribution when possible to give a comprehensive picture of
system behavior.

For this purpose we employ Markov Chain Monte Carlo (MCMC) methods, a common
technique to simulate generic physical systems and so to sample from generic probability
distributions. This strategy performs a weighted random walk over configuration space,
analogous to thermalization and dispersion in a real system. Returning to our coin flip
example, we can consider how in Figure A.7 the subsystem dynamically evolves. If our
subsystem s begins in a the low entropy ground state (a), through the jostling of the
coins the system will naturally tend towards a typical, high entropy configuration (b).
Yet physically this transition is not instantaneous. For instance, gas molecules kinetically
bump into each other and gradually disperse throughout their enclosure. We use Markov
chain methods to simulate coin flip thermalization as a process that occurs one coin flip
at a time.

A Markov chain walks through configuration space in discrete increments of time. At
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each step the Markov chain transitions from one state at time 𝑡 to another state at slightly
later time 𝑡 + Δ𝑡. This is a random walk, where a move from state s to s′ is made with
probability 𝑃(s → s′). Under mild conditions on the transition probabilities, this Markov
chain will converge to some equilibrium distribution 𝑃(s). If the states of the Markov chain
are distributed according the equilibrium 𝑃(s), the final s′ after the chain move s → s′

will by definition share the equilibrium distribution

𝑃(s′) =
∑
s

𝑃(s)𝑃(s → s′). (A.42)

We are then left with the problem of constructing a Markov chain which has the particular
equilibrium distribution 𝑃(s) we are interested in.

A simple and ubiquitous way to establish such a chain is known as the Metropolis-
Hastings algorithm. Each step in this Markov chain consists of two parts. First, a move to a
new state is proposed given the current state. Second, that move is either accepted and the
chain moves to the new state, or it is rejected and the chain remains at its current state. If
we propose moves with transition probabilities 𝑃prop(s → s′), we accept each proposal
with probability

𝑃acc(s → s′) = min
(
1,
𝑃(s′)𝑃prop(s′ → s)
𝑃(s)𝑃prop(s → s′)

)
. (A.43)

We will often use symmetric proposals where 𝑃prop(s → s′) = 𝑃prop(s′ → s), for which
this acceptance probability simplifies to

𝑃acc(s → s′) = min
(
1, 𝑃(s

′)
𝑃(s)

)
= min

(
1, 𝑒𝛽(𝐻(s)−𝐻(s′))

)
. (A.44)

In terms of the system energy 𝐻(s), we see that the algorithm will always accept changes
that decrease the energy, and occasionally moves that increase it, an emulation of how the
real system evolves.

From this two-step process the overall Markov chain transition probabilities are then
distinguished by if they increase or decrease the probability as

𝑃(s → s′) =




𝑃prop(s → s′) 𝑃(s′) ≥ 𝑃(s), s ≠ s′

𝑃prop(s → s′)𝑃(s′)𝑃(s) 𝑃(s′) < 𝑃(s)
𝑃prop(s → s) +∑

s′<s 𝑃prop(s → s′)
[
1 − 𝑃(s′)

𝑃(s)
]

s′ = s

(A.45)
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where sum in the case s′ = s accounts for all the rejected proposals to states s′ with
probability 𝑃(s′) < 𝑃(s). Summing over these cases, now of states s that can produce a
state s′, we can check the stability condition Eq. (A.42) as

∑
s

𝑃(s)𝑃(s → s′) =
∑
s<s′

𝑃(s)𝑃prop(s → s′) +
∑
s>s′

𝑃(s)𝑃(s
′)

𝑃(s) 𝑃prop(s → s′)

+ 𝑃(s′)𝑃prop(s′ → s′) + 𝑃(s′)
∑
s>s′

𝑃prop(s′ → s)
[
1 − 𝑃(s)

𝑃(s′)
]

= 𝑃(s′)
∑
s

𝑃prop(s → s′) = 𝑃(s′). (A.46)

Therefore the desired distribution is a fixed point of the Metropolis-Hastings algorithm,
regardless of the choice of proposals 𝑃prop(s → s′). However, being a Markov chain, there
is still a clear correlation between subsequent steps in the random walk. Only after a
typical number of Markov chain known as the mixing time are the samples meaningfully
independent. Therefore to efficiently obtain independent samples from the distribution,
to for example compute expectations, the mixing time should be as small as possible. The
form these proposals take can considerably impact the mixing time, and clever choices are
often needed to make Monte Carlo methods tractable.

A common choice of proposal for discrete settings like this is to consider single site flips
where we choose a random site 𝑖 and flip it from heads to tails, 𝑠𝑖 = 1 ↦→ 0 or vice versa.
An advantage to this local change is that the resulting chance in the probability (or energy)
is small and therefore likely to be accepted. If a entirely new global configuration is drawn
uniformly at random, it likely has a much lower probability (or higher energy) than the
current sample, and so will likely be rejected and waste an iteration of the algorithm.

If we apply this to our simple coin flipping example, Figure A.9 shows how the number
of flips changes over the course of the Metropolis-Hastings algorithm. We can observe
that although the system starts in a configuration not particularly representative of the
equilibrium distribution, after many iterations the Markov chain thermalizes the state.
Although this is a fairly simple distribution, one we could sample directly, the flexibility
of MCMC allows us apply it to far more complex distributions to draw inferences. In
doing this, however, we must be careful to ensure that the Markov chain has adequately
converged. If samples are interpreted too early in the algorithm, results will be skewed
by the initial state, as in the initial samples of Figure A.9.

These Monte Carlo methods are very powerful, and are the workhorse of the statistical
inferences made in this thesis. In order to apply these methods to their fullest, we can
further augment the Metropolis-Hastings algorithm by performing parallel tempering to
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Figure A.9: Trajectory of the Metropolis-Hastings MCMC algorithm to thermalize a
system of 100 coin flips. The system begins in the ground state where 𝑛𝐻 = 0. The
average value 𝑛𝐻 = 40 is highlighted. Once the Markov chain has thermalized, the
samples are indicative of this average value.

reduce the mixing time of the Markov chains and thermodynamic integration to compute
the Bayesian evidence in a manner analogous to how such methods are used to compute
the physical free energy.

A.3 Information theory

In the previous section we discussed how a physical perspective on statistics naturally
leads to concepts like entropy and algorithms for exploring configuration spaces. In this
section we discuss an information theoretic perspective which abstractly considers the
sequence of coin flips as a message to be transmitted, allowing us to reckon with the
inherent complexity of the data observed in a general sense.

Central to information theory is a thought experiment aiming to encode a message as
efficiently as possible. Suppose we would like to transmit to another party the results of
our earlier experiment of 10 coin flips as the message "HHTTHTTHTT." Suppose further
that we are restricted in this communication to use a binary channel which can only send
a binary sequence of 0’s and 1’s of our choosing. We would then like the receiver on
the other end of the channel to be able to decode our binary transmission back into our
original message.

Just as we represented the sequence as a physical state vector in the last section, we
may now encode these coin flips as the binary string "1100100100" where the digit "1"
represents heads and "0" represents tails. This correspondence between meanings and
binary strings is known as a codebook. So long as we and the receiver agree on the nature
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of the encoding, the receiver can use the codebook to decode the binary string back into
the original message of outcomes. To determine the efficiency of our transmission we
measure the length of our binary string in bits. In this case our encoding used 10 digits
(bits) to transmit the message, one for each flip. A schematic of this encoding framework
is given in Figure A.1c.

This association of digits to outcomes is a natural encoding of two-sided coin flips. In
a more general setting, however, we will need to be more creative in our transmission.
Suppose we would instead like to send the message "ELEVENELVES" as a binary string.
Since this string contains 5 distinct characters, we can no longer encode the message by
assigning each character its own binary digit. Some characters must be represented by
a codeword of multiple binary digits. If we are not careful, however, this can render our
message ambiguous. If we assign "E" to the codeword "0" and "L" to the codeword "00,"
the binary message "00" could decode into either "EE" or "L."

To avoid this polysemy, we can ensure that our transmission is uniquely decodable by
using a prefix-free (or "instantaneous") code. If no codeword in our codebook is a prefix
of another codeword, as the receiver reads the message from left to right the divisions
between the codewords will always be clear. Our earlier example was not prefix-free as
the codeword "0" is a prefix of the codeword "00," leading to the double meaning.

Any such prefix-free binary code can be usefully represented as a binary tree whose
leaves each correspond to a character (or "symbol") being transmitted. The codeword
associated to each symbol is then represented by the path from the root of the tree down
to that symbol. Figure A.10a shows an example of such a tree used to encode the five
characters. Following the tree paths this "balanced" encoding represents the characters
{"E", "L", "V", "N", "S"} with the codewords {"00", "01", "10", "110", "111"} respectively. With
this codebook we can then encode the phrase "ELEVENELVES" into pictured binary string
of length 24 bits and ensure that it uniquely decodes back into our desired dispatch.

Now, a key goal of information theory is not only to successfully transmit a message
but also to do so using as few bits as possible. This objective can be seen as a formal-
ization of Occam’s razor, the scientific principle that favors the simplest possible answer
to a question. In this analogy, transmitting our binary string effectively "explains" to the
receiver the data we have observed, making a shorter transmission a more succinct expla-
nation. If we understand predictable patterns in our observations, we can exploit them to
construct a more efficient encodings. There is a fundamental duality between compression
and modeling, as in this context, to compress is to understand.

In this spirit we can look for patterns in our message to try and come up with a clever way
to shorten our encoding. The phrase "ELEVENELVES" has a rather lopsided distribution
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Figure A.10: Examples of an (a) balanced code and (b) optimized Huffman code to
convert the phrase "ELEVENELVES" into a binary string. The string associated to each
letter is denoted by the path from the top of the tree down to the appropriate node. The
Huffman code is able to produce a shorter overall message than the balanced code by
representing the common letter "E" with a short string "0" despite representing the
uncommon letters "N" and "S" with longer strings.

of characters at 5 E’s, 2 L’s, 2 V’s, 1 N, and 1 S. Some of our codewords are therefore being
used in the transmission much more frequently than others. If symbol 𝑟 = 1, ..., 𝑞 of the 𝑞
symbols appears 𝑛𝑟 times in our message as a codeword of length ℓ𝑟 , the total message
length is

𝑞∑
𝑟=1

𝑛𝑟ℓ𝑟 . (A.47)

To shorten the overall message we would therefore like the codewords to be as short
as possible and to prioritize shortening frequently occurring symbols. In our original
encoding the symbol "E" is transmitted with the codeword "00" at a cost of two bits apiece.
Since "E" appears so frequently in the message it may be wise to instead represent it with
a shorter codeword like "0" and save 5 bits in our total transmission.

Yet this choice has a cost. If we assign "0" to represent "E" none of the other four
characters can be represented with a codeword that begins with a "1" or else the code
would no longer be prefix-free. When shortening one codeword we must necessarily
lengthen other codewords. This tradeoff is the content of Kraft’s inequality, which states
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that the codeword lengths of any prefix-free code must satisfy

𝑞∑
𝑟=1

2−ℓ𝑟 ≤ 1, (A.48)

considering the fraction of the binary tree each codeword occupies. Given the frequen-
cies 𝑛𝑟 at which each symbol appears, we would like to select codeword lengths that
minimize the total message length Eq. (A.47) subject to the prefix-free constraint Eq. (A.48).

Huffman codes strike this balance and provably minimize the message length by assign-
ing short codewords to frequent symbols while saturating Kraft’s inequality. Figure A.10b
contains an example of a Huffman code for our application. The code shortens the code-
word for "E" from 2 to 1 bit while lengthening the codewords for "N" and "S" from 3 to 4
bits. Since "E" appears much more frequently than "N" and "S," this change shortens the
overall message from 24 to 23 bits. By adapting the encoding to the nature of the data, the
Huffman code achieves a more parsimonious representation of the message.

More generally given a frequency distribution {𝑛𝑟} of symbols one can always construct
a Huffman code with a simple recursive algorithm. The resulting optimal codeword
lengths {ℓ𝑟} follow a predictable pattern. If a symbol appears at a fraction 𝑝𝑟 = 𝑛𝑟

𝑛 among
the 𝑛 total symbols, the length of its associated codeword satisfies

− log2(𝑝𝑟) ≤ ℓ𝑟 < − log2(𝑝𝑟) + 1. (A.49)

Frequent symbols with high probability 𝑝𝑟 are thus assigned small codewords as− log2(𝑝𝑟)
is small while infrequent symbols use longer codewords. In our "ELEVENELVES" exam-
ple, the character "E" appears with probability 𝑝 = 5/11, and is so assigned a string of
length 1 ≈ log2(11/5) while the character "S" appears at the ratio 1/11 and is encoded
using 4 ≈ log2(11) bits.

In most contexts we consider, symbol probabilities are small and codeword lengths are
long. In this regime we can approximate lengths as ℓ𝑟 = − log2(𝑝𝑟), which would in fact
be the optimal choices if the lengths could be non-integral numbers of bits. Using these
optimal codeword lengths, the minimum message length per symbol is

𝑆[{𝑝𝑟}] = 1
𝑛

𝑞∑
𝑟=1

𝑛𝑟ℓ𝑟 = −
𝑞∑
𝑟=1

𝑝𝑟 log2 𝑝𝑟 , (A.50)

known as the Shannon entropy (or simply "entropy") of the distribution {𝑝𝑟}. For continuous

166



distributions 𝑃(x) this entropy generalizes to

𝑆[𝑃] = −
∫

𝑃(x) log2 𝑃(x)𝑑x. (A.51)

By providing an information theoretic lower bound on transmission, the Shannon entropy
captures the inherent information content of a probability distribution that no amount of
clever encoding tricks can overcome.

We can make contact between this information-theoretic entropy and the physical
entropy described in Section A.2. There the microcanonical ensemble is the uniform
distribution 𝑃(s) = 1

Ω over all possible configurations that conserve the total energy. The
Shannon entropy Eq. (A.50) then agrees which the microcanonical entropy 𝑆 = logΩ of
Eq. (??). From this perspective, a macrostate with high physical entropy is one where a
large amount of information is required to specify which of the many possible microstates
it represents.

We also note that the uniform distribution has the highest entropy among all possible
distributions {𝑝𝑟} on 𝑞 objects. By the convexity of the logarithm,

𝑆[{𝑝𝑟}] = −
𝑞∑
𝑟=1

𝑝𝑟 log 𝑝𝑟 ≤ −
𝑞∑
𝑟=1

1
𝑞

log
(
1
𝑞

)
= log 𝑞. (A.52)

This observation gives another motivation for the microcanonical ensemble: the maximum-
entropy distribution over possible configurations. Since the entropy measures how struc-
tured, how compressible, a probability distribution is, this maximum-entropy distribution
is structureless and maximally agnostic: a reasonable properties of an equilibrium distri-
bution where any initial structure is thermalized away.

The canonical ensemble 𝑃(s) ∝ 𝑒−𝛽𝐻(s) can likewise be motivated as a maximum en-
tropy distribution with a given average energy, which determines the choice of 𝛽. When
designing priors for Bayesian inference, we will frequently appeal to this minimally as-
sumptive principle and choose maximum-entropy priors subject to certain constraints we
expect the system to provide. For example, a Gaussian distribution can be motivated as
the maximum entropy distribution of a real random variable of a fixed mean and variance.

Returning to encodings, to obtain the entropy we had considered the total message
length of a Huffman code optimized to send that particular message. If we believe that
the symbols will be distributed with probabilities {𝑞𝑟} we should optimize our Huffman
code accordingly to have code lengths ℓ𝑟 = − log 𝑞𝑟 . However in many contexts we do not a
priori know what distribution of symbols to expect. We may assume a distribution {𝑞𝑟} that
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is not borne out in practice. If the symbols we must transmit have true probabilities {𝑝𝑟}
the average code length becomes

∑
𝑟

𝑝𝑟(− log 𝑞𝑟). (A.53)

Had we used code lengths − log 𝑝𝑟 attuned to the true distribution, this would give the
Shannon lower bound. Since the our encoding is misspecified it will instead require a
larger number of bits to transmit. The shortfall between the two, the extra cost we incur,
is known as the Kullback-Leibler (KL) divergence between the true distribution {𝑝𝑟} and our
assumption {𝑞𝑟}:

𝐷KL({𝑝𝑟}||{𝑞𝑟}) =
( 𝑞∑
𝑘=1

𝑝𝑟(− log 𝑞𝑟)
)
−

( 𝑞∑
𝑘=1

𝑝𝑟(− log 𝑝𝑟)
)

=
𝑞∑
𝑘=1

𝑝𝑟 log
𝑝𝑟
𝑞𝑟

≥ 0. (A.54)

This story repeats when modeling data. Given a model with distribution 𝑄(x) we can
write the Huffman code length (or description length) of an observation x as

𝐻(x) = − log𝑄(x), (A.55)

which we can compare to the Hamiltonian in Eq. (A.38). If we use this model encoding on
a stream of observations whose true distribution is 𝑃(x), the average description length
decomposes as

∑
x

𝑃(x)𝐻(x) = −
∑
x

𝑃(x) log𝑃(x) +
∑
x

𝑃(x) log 𝑃(x)
𝑄(x)

= 𝑆[𝑃]︸︷︷︸
entropy

+𝐷KL(𝑃||𝑄)︸       ︷︷       ︸
cross-entropy

(A.56)

into the inherent entropy of the data and the cross-entropy cost of our model misspecifica-
tion. As we model the random process 𝑃(x) our average description length can never fall
below the entropic lower bound, but any description length above this point is evidence
of the failure of our model to match reality. While it is relatively straightforward to mea-
sure this average description length in practice, deducing what fraction of it is due to the
entropy or the cross-entropy is a hard problem. When comparing the average description
lengths of two models on the same stream of data, however, we can confidently attribute
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their difference to a difference in the cross-entropies and prefer the model with the smaller
average description length. This motivates the minimum description length (MDL) princi-
ple, which prefers models whose corresponding encodings across realistic data sets are as
small as possible.

As an application, suppose that we would like to select the appropriate value of a
parameter θ for a model 𝑃(x|θ). For each choice of parameter, the corresponding model
description length is simply the minus log-likelihood𝐻(x|θ) = − log𝑃(x|θ). Choosing the
model that minimizes the description length therefore amounts to finding the maximum-
likelihood estimate of the parameter as

argminθ𝐻(x|θ) = argmaxθ𝑃(x|θ). (A.57)

As discussed in Section A.1, however, this maximum likelihood estimation is prone to
overfitting. This approach is also problematic from an information-theoretic perspective.
In our optimization of the transmission we have neglected the cost of transmitting the
parameter θ itself. In the Bayesian context this parameter will be distributed according to
a prior 𝑃(θ) that corresponds to its own encoding

𝐻(θ) = − log𝑃(θ). (A.58)

If we consider the total information cost of this now two stage process of first transmitting
the parameter θ and then the data x given that parameter, we recover Bayesian maximum
a posteriori (MAP) estimation

argminθ [𝐻(x|θ) + 𝐻(θ)] = argmaxθ𝑃(x|θ)𝑃(θ)
= argmaxθ𝑃(θ|x). (A.59)

As seen earlier, the maximum likelihood and MAP estimates of a parameter often
differ considerably, particularly when a relatively small amount of data is available. In
Section 3.1 on the applications of information theory to network science we will again
encounter situations where neglecting certain terms of the transmission process leads to
wildly different results.

After the two stage transmission process of Eq. (A.59) we transmit to the receiver
both the data of interest x and the best-fit parameter θ used. When assessing model
performance, however, knowledge of the the parameter is often redundant to the data.
We can instead holistically evaluate model performance using the Bayesian evidence, the
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probability that a model generates a particular datax summed over all possible parameters

𝑃(x) =
∫

𝑃(x|θ)𝑃(θ). (A.60)

The description length of the integrated model is then

𝐻(x) = − log𝑃(x). (A.61)

Therefore we can motivate model selection that chooses model with higher Bayesian
evidence, as when computing Bayes factors, as selecting the model that more efficiently
compresses the data integrated over its latent parameters. These connections highlight
the duality between the compression and modeling of a data set.

To this point, we have considered the Shannon entropy of probability distributions. How-
ever, much of this thesis focuses on a subtly different notion of the complexity of objects.
Shannon entropy quantifies the complexity of a probability distribution without regard
to the specific objects within that distribution. For instance, suppose that we want to
transmit one of two messages: the full text of Dune by Frank Hebert or It by Stephen King.
While each book’s content is undoubtedly "complex," our current framework would allow
us to "transmit" them with minimal information cost. If we define an encoding where "0"
represents the text of Dune and "1" stands for It, we could send a single "0" to transmit the
entirety of Dune. This setup might suggest that the inherent information cost of Dune’s
content is just one bit, which is clearly an unreasonable conclusion.

The problem is that we have overlooked the information cost required to establish the
codebooks. If the receiver is unaware of our coding scheme, we must first communicate
the full text that each binary digit corresponds to before our transmission. Once this
scheme is established, we can indeed send our choice of book with a single bit repeatedly
at low cost. However, the initial information cost of creating the codebook is much higher.
Shannon entropy measures the information needed to transmit objects drawn from a
probability distribution, not the complexity of the objects themselves.

To broach the information content of an object, we should instead turn to the Kolmogorov
complexity. Certain objects and outcomes appear to be inherently more complicated than
others. For example a sequence of coin flips "HHHHHHHHHH" is easy to describe as "10
heads in a row." Even if the sequence was 1000 heads, the outcome would not be much
more complex to describe. On the other hand, the pattern of coin flips "HHTTHTTHTT"
we observed appears to be more complicated to describe. However, even in this case the
coin flips we observed are simply the first 10 digits of 𝜋 = 11.00100100...2 in binary: a
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concise, if unusual, explanation. Yet if we are presented with a truly "random" string
of coin flips, there is little hope for such an efficient description of the outcomes. The
Kolmogorov complexity is meant to capture the difference between these settings and
fundamentally measure how structured a given data set is.

Roughly speaking, the Kolmogorov complexity 𝐾(x) can be understood as the length of
the shortest computer program that would output the object (typically string) in question.
In our earlier examples, this program might be "output 10 heads" or "first 10 digits of
𝜋2" in pseudocode. In our earlier example of books, the full texts may be compressed
with a technique like the Lempel-Ziv-Welch algorithm used in the .gif file format. The
"program" in this case would consist of a description of the LZW algorithm, followed by
the compressed file. The total program size, and so complexity will still be fairly large as
some fraction of the original length of the book, but is much greater than the single bit we
had used to transmit it in a probabilistic sense.

The "computer program4" in the definition of the Kolmogorov complexity is vague
enough to accommodate any possible valid encoding or explanation of a string. For
example, we can consider the Huffman encoding of the data x generated by a model 𝑀.
We can imagine a computer program which consists of a description of the model𝑀 itself,
then provides the Huffman code as a binary string of length 𝐻𝑀(x) that can be decoded
with knowledge of the model. When the data set is large, we typically neglect the constant
overhead required to describe the model and this framework and roughly say that an
encoding of length 𝐻𝑀(x) is possible for the data x5.

From this perspective each model can be viewed as a competing encoding of the data,
each of which provides an upper bound on the inherent complexity. If we have a basket
of candidate models 𝑀 ∈ M , we can then loosely approximate the "true" information cost
of x as the minimum

𝐾(x) ∼ min𝑀∈M𝐻𝑀(x). (A.62)

The higher the model evidence the shorter the description length, yielding a tighter upper
bound on the true cost.

Despite this relative improvement, it is not possible to conclusively show that our
approximation is particularly close to the truth. There may always be clever encoding
out there that transmits the data far more efficiently than the models we consider. To
show that 𝐾(x) is above some value 𝑛, we would need to check the outputs of all possible

4More formally a universal Turing machine.
5In this pursuit we cannot consider models too finely attuned to a particular data set, or else we can no

longer neglect the cost to specify the model itself.
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programs of length less than or equal to 𝑛, an uncomputable task. For example, we
may not recognize our initial sequence of coin flips "HHTTHTTHTT" as the first 10 digits
of 𝜋 = 11.00100100...2 in binary, a more concise explanation that our models.

Although we cannot find the perfect encoding, nor the perfect model, we can strive
for a better understanding of systems and their complexity in this information-theoretic
framework.

A.4 Prediction and validation

In the previous sections, we explored perspectives on unsupervised machine learning tasks,
which aim to understand a data set in isolation without guidance or predefined outcomes.
For instance, we can infer the probability of heads from a sequence of coin flips or deduce
the group structure from a network using only the pattern of connections. We also
discussed how measures like Bayesian evidence or description length assess the quality
of our model in an information-theoretic manner that is intrinsic to the data.

Often, however, we may be interested in applying our model and its inferences beyond
the scope of the initial data set. One application is to predict future events; for example, in
a college football network of match outcomes, we might predict the winner between two
teams that did not compete during the regular season. Additionally, we may validate our
inferences against expert knowledge or existing context in a supervised setting, or compare
the outputs of different models applied to the same data set. Machine learning offers a
variety of tools to address these practical purposes.

If we assume that the same mechanisms that generated our observed data also inform
unobserved outcomes, we can leverage our model inferences to make predictions. For
example, if we observe a coin and are convinced it is fair, we may predict that future flips
of the coin will land heads and tails with equal probability. This extrapolation may or
may not be accurate. In machine learning terminology, we initially fit the model to the
"training" data and then assess the quality of the resulting predictions using a "testing"
data set.

In our coin flip example, we may split the sequence swe observe into a training set strain

of 𝑛train flips and testing set stest of 𝑛test flips. Figure A.1d provides a schematic of this
cross-validation set up. After fitting the model to the training data we obtain the posterior
distribution of the probability 𝑝, represented as 𝑃(𝑝|strain), which is maximized by the
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best fit

𝑝̂train
MAP =

𝑛train
𝐻 + 20
𝑛train + 40

(A.63)

as in Eq.(A.9). Assuming the withheld testing data stest is governed by the same pa-
rameter 𝑝̂train

MAP as the training data, we can evaluate the likelihood Eq. (A.4) on the testing
data

𝑃(stest|𝑝̂train
MAP) =

(
𝑛train
𝐻 + 20
𝑛train + 40

)𝑛test
𝐻

(
𝑛train
𝑇 + 20
𝑛train + 40

)𝑛test
𝑇

. (A.64)

This serves as a measure of the model’s out-of-sample predictive performance.
While most cross-validation tests use the single best parameter, we can instead use the

full posterior distribution of possible parameters to compute the posterior predictive

𝑃(stest|strain) =
∫

𝑃(stest|𝑝)𝑃(𝑝|strain)𝑑𝑝

=
(𝑛train + 41)!(𝑛𝐻 + 20)!(𝑛𝑇 + 20)!
(𝑛 + 41)!(𝑛train

𝐻 + 20)!(𝑛train
𝐻 + 20)! . (A.65)

This distribution is equal to the probability that the model generates the data stest condi-
tioned on it also generating strain.

In a cross validation context, the initial data set s is randomly split into the training
and testing data sets, often at a 80/20 ratio. The predictive performance of the model is
quantified using either the likelihood or posterior predictive. In keeping with the infor-
mation theoretic interpretation Eq. (A.58), we typically report the negative log likelihood
or posterior predictive as

⟨𝐻(stest|𝑝̂train
MAP)⟩stest ,strain = ⟨− log𝑃(stest|𝑝̂train

MAP)⟩stest ,strain ,

⟨𝐻(stest|strain)⟩stest ,strain = ⟨− log𝑃(stest|strain)⟩stest ,strain , (A.66)

where the results are averaged over many possible validation splits strain, stest. In practice
the likelihood and posterior predictive can give different results, but we will generally
prefer to use the latter to evaluate the full posterior of possible parameter values.

The Bayesian evidence can also be viewed as a measure of predictive performance,
averaged over various data splits. We can write out our data set s as the sequence of coin
flips 𝑠1, ..., 𝑠𝑛 . Bayesian evidence is the probability that the model generates this entire
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sequence. Meanwhile, the posterior predictive is the probability that the model generates
some new piece of data given what it has already generated. By sampling the posterior
predictive one coin flip at a time, we can therefore sequentially generate the full sequence.

We start by sampling the first flip 𝑠1, which is equally likely a priori to be heads or
tails. This outcome informs the next coin flip, drawn according to the posterior predic-
tive 𝑃(𝑠2|𝑠1). This repeats until the final coin is predicted using all preceding results
using 𝑃(𝑠𝑛|𝑠𝑛−1, ..., 𝑠1). By definition of the posterior predictive, the overall probability of
generating any given sequence of observations must then equal the Bayesian evidence as

𝑃(s) = 𝑃(𝑠𝑛 , 𝑠𝑛−1, ..., 𝑠1)
= 𝑃(𝑠𝑛|𝑠𝑛−1, ..., 𝑠1)...𝑃(𝑠2|𝑠1)𝑃(𝑠1). (A.67)

From the logarithm of this equation, the description length of the data is the sum over the
log-posterior-predictives at each step:

𝐻(s) = 𝐻(𝑠𝑛|𝑠𝑛−1, ..., 𝑠1) + ... + 𝐻(𝑠2|𝑠1) + 𝐻(𝑠1). (A.68)

This relationship holds regardless of the order in which the coin flips are considered.
Therefore, the normalized description length is also equal to a suitably defined average

1
𝑛
𝐻(s) = ⟨𝐻(𝑠𝑖|strain)⟩𝑖 ,strain (A.69)

over all possible subsets of training data and choices of single withheld test point 𝑠𝑖 [51].
We can thus use the Bayesian evidence not only as an information theoretic measure for

model selection, but also as an indicator of overall predictive power. However, in keeping
with much of the machine learning literature we will often report cross-validation results
using the log-likelihood Eq. (A.64) and log-posterior-predictive Eq. (A.66) in this thesis.

Beyond prediction, we would often like to assess the quality of the inferred param-
eters directly. If we know from an artificial or empirical context that a parameter truly
has a certain value, how does our inferred value compare? One way to establish such a
"true" parameter value is in a synthetic test where we first draw a true value of the pa-
rameter 𝑝true from the prior 𝑃(𝑝). We then sample an artificial data set s from the model
likelihood 𝑃(s|𝑝true). Based solely on the resulting data s, we then infer the parameter 𝑝
and compare it to the underlying 𝑝true.

In this Bayesian setting, the posterior 𝑃(𝑝|s) is by definition precisely the distribution
of the parameters 𝑝 that could have resulted in the observation s. Thus, the full posterior
distribution gives a complete and optimal description of the truth. Compared to this

174



benchmark, synthetic tests provide valuable test cases to understand deviations in the
inferences. For example, we can examine how inferences differ when models are misspec-
ified and do not align with the actual generative process. Understanding this robustness
is crucial when applying models to real data, where they very likely do not match the real
generative process.

Even when we consider the posterior of the true model, we may observe how point
estimate summaries differ from the true value. Depending on how we quantify the
distance between the inference 𝑝̂ and the truth 𝑝true, different point estimates may be
appropriate. If we define success as only when we get the parameter exactly right (using
a "one-hot" metric), we should report the MAP estimate since it maximizes this posterior
probability. However, if we aim to minimize the squared error (ℓ2 metric) of our inference,
we should report the expected a posteriori (EAP) value, which provides the least squares
estimate over the posterior. Thus even in the idealized scenario where the data is generated
by model, our choice of metric over the parameters influences how we should summarize
the inference, either with the mode or the mean of the posterior.

While we can optimize our point estimates accordingly, the posterior distribution can
often be highly dispersed or even multimodal. This means that, given the data, multiple
parameter values may fit equally well. The true parameter could reside at any of these
peaks, meaning that no single point estimate can reliably be close to the truth. Many
inference problems undergo a transition between a noisy regime where it is not possible
to consistently identify the generating parameters to a data-rich regime where it becomes
feasible. Section 1.2.3 discusses such an example in the context of finding group structures
in networks, which corresponds to the phase transition of the Ising model at its critical
temperature.

In this thesis, we will employ synthetic tests, cross-validation, and parameter metrics
to better understand the performance of our network models. Applying these validation
frameworks to networks presents unique challenges. For instance, when examining the
group structure of a network, we need to evaluate the quality of group identity parameters.
Unlike the real probability 𝑝 of coin flips, there is no inherent notion of "distance" or "mean"
among group labelings, which are categorical variables, to facilitate comparison.

In Chapter 3 we discuss information-theoretic measures to assess the similarity between
two such clusterings of the same set of objects. We then apply this measure in synthetic
tests to observe the relative performance of commonly used algorithms to recover the
ground truth groups used to generate the network. In this picture we also observe
regimes or types of group structure where all algorithms struggle to recover the truth.

The projects considered in this work involve ideas borrowed from the disciplines dis-
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cussed in all of these Appendices, often in ways that do not cleanly separate into any
single category. In Figure A.2 we have illustrated schematics of these applications across
the thesis.

A.5 Equivalence of SBM inference and the Ising model

In this appendix we discuss the relationship between the Ising model, mentioned in
Appendix A.2, and the stochastic block model of Section 1.2.3. More details of this
correspondence may be found in the review [92].

We first consider a simpler form of the SBM. Suppose that we infer a division of the
network into at most two groups. If we interpret this inference problem physically, as
in Eq. (A.38), the posterior distribution of possible group structures is equivalent to the
thermal ensemble of the Ising model.

To make this correspondence clear, we write the group partition as s, where the en-
try 𝑠𝑖 = 1 indicates that node 𝑖 belongs to one group, while 𝑠𝑖 = −1 indicates it belongs to
the other. In this notation the model posterior is

𝑃(s|A) ∝
∏
𝑖< 𝑗

𝜔
𝐴𝑖 𝑗
𝑏𝑖𝑏 𝑗

∝
∏

(𝑖 , 𝑗)∈𝐸

(
𝑝in

𝑝out

)𝛿𝑏𝑖 𝑏𝑗
(A.70)

where we have set all in- and out-group weights to fixed probabilities, as in the planted
partition model Eq. (2.31), and used a uniform prior over groups 𝑃(s). If we compare this
to the Hamiltonian of the Ising model at unit coupling 𝐽 = 1 on the same graph,

𝐻(s) = −
∑

(𝑖 , 𝑗)∈𝐸
𝜎𝑖𝜎𝑗 , (A.71)

we have the equivalence

𝑃(s|A) ∝ 𝑒−𝛽𝐻(s), (A.72)

for inverse temperature

𝛽 =
1
𝑇

= log
(
𝑝in

𝑝out

)
. (A.73)
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In other words, given a network A, the likely group assignments of the network for
an in-group preference ratio 𝑝in/𝑝out are given by the Ising model configurations at the
corresponding temperature.

This has profound implications for the stochastic block model. One of the key properties
of the ferromagnetic Ising model is its phase transition. When the temperature is low, the
model is near its ground state where all of the spins are aligned since it is energetically
favorable. When the temperature is high enough, however, entropy takes over and these
long range correlations dissipate. Between these two regimes, the Ising model undergoes
a phase transition at a critical temperature where the correlation length diverges. The
particular value of this critical temperature depends on the topology of the graph. Samples
from these regimes are plotted in Figure A.11a, demonstrating the sudden breakdown of
the ordered state.

Analogously, inference with the stochastic block model has two regimes shown in
Figure A.11b in the constant degree limit. In the "easy" regime, when 𝑝out ≪ 𝑝in, groups
are well-separated and easy to identify. If we simulate an Ising model on the same network
at this low temperature, the resulting configurations will be near the ground state and the
true planted groups. In contrast when 𝑝out = 𝑝in it is completely impossible to recover
the groups since they have no bearing on the network structure. The corresponding Ising
model has infinite temperature 𝑇 = 1/log(𝑝in/𝑝out) and every possible partition is equally
likely. The phase transition of the Ising model divides these regimes by a detectability
threshold in the ratio 𝑝in/𝑝out. When the signal is above this threshold we can reliably
recover the groups while below the threshold we cannot.

The precise meaning of this observation and limit can be formalized, as reviewed in [6].
For more complex SBMs with more groups and non-trivial priors on b, we can consider
a Potts Model with external fields. Across these settings similar detectability thresholds
emerge. In our analysis on real networks in Section 3.2.3, we observe that this barrier
indeed limits many community detection algorithms.

177



(a)

(b)
low � critical � high �

�out � �in detectability �out = �inthreshold

Ising
model

Stochastic
block model

Figure A.11: The analogous phase transitions of the Ising model and stochastic block
model. (a) The Ising model moves from an ordered phase at low temperature 𝑇 to a
disordered, noisy phase at high temperature. These phases are separated by a critical
temperature at which the correlation length diverges. Samples from the model on a
square lattice are shown. (b) Inference in the stochastic block model is easy when the
probability of connection between groups 𝑝out is much smaller than within groups 𝑝in. If
these probabilities are the same inference is impossible. The two regimes are separated
by a detectability threshold that corresponds to the phase transition of the Ising model
on that network.
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Appendix B

Supplementary Material for Chapter 2

B.6 Stochastic block model Markov Chain Monte Carlo

In this appendix we describe the Monte Carlo algorithm used in order to sample from the
posterior distribution of the stochastic block models described in Chapter 2. In order to
sample from the posterior distribution of these models, which can be generally written as
a combination of a group partition b and continuous parameters.

For generality, we consider a model with a labeling parameter b, a single real parame-
ter 𝑥 and likelihood 𝑃(A|b, 𝑥). We will consider the specific prior

𝑃(b) =
∏

𝑟 𝑛𝑟 !
𝑛!

(
𝑛 − 1
𝑞 − 1

)−1 1
𝑛

(B.1)

and arbitrary prior 𝑃(𝑥). We would then like to sample from the posterior distribution

𝑃(b, 𝑥|A) ∝ 𝑃(A|b, 𝑥)𝑃(b)𝑃(𝑥). (B.2)

Our strategy for accomplishing this will be to directly sample from the prior distribution
over the parameters and then use a Metropolis-Hastings accept/reject step to account for
the influence of the likelihood. That is, if we have a Markov chain 𝑃(b, 𝑥 → b′, 𝑥′) that
converges to the prior distribution 𝑃(b)𝑃(𝑥), if we accept the proposed (b′, 𝑥′) according
to the ratio

𝑃accept(b, 𝑥 → b′, 𝑥′) = min
(
1, 𝑃(A|b′, 𝑥′)

𝑃(A|b, 𝑥)
)

(B.3)

we are left with a Markov chain that converges to the posterior 𝑃(b, 𝑥|A). The mixing
time of this chain, which determines its efficiency, depends on how often these proposals
are accepted. Since the likelihood 𝑃(A|b, 𝑥) is often a rapidly varying function of the
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parameters, we will therefore only propose small changes in the parameters since values
far away from the current value are likely to be rejected. Furthermore, the change in the
likelihood after a local move can often be computed more efficiently than a completely
new set of parameters. Although effective Markov chains have been proposed that instead
aim for larger global moves in order to improve ergodicity of the chain [108], we use local
chains for simplicity in this thesis.

Since the groups b and parameter 𝑥 are independent in the prior distribution we can
sample them separately. To sample 𝑥, we first compute its cumulative distribution 𝐹(𝑥),

𝐹(𝑥) =
∫ 𝑥

−∞
𝑃(𝑥′)𝑑𝑥′. (B.4)

Assuming 𝑃(𝑥) is supported everywhere, 𝐹 : R → [0, 1] is a monotonically increasing
function and can be inverted as 𝐹−1 : [0, 1] → R. To generate a sample from 𝑃(𝑥) we can
then first sample uniformly from the unit interval𝑢 ∈ [0, 1] to obtain the sample 𝑥 = 𝐹−1(𝑢).

Although this process directly generates samples from the distribution, these inde-
pendent samples are likely to large differences between them that will slow down the
accept/reject step on the likelihood. To generate smaller moves, we will adapt our sam-
pling procedure into a Markov chain that converges to 𝑃(x). We first define a Markov
chain that generates uniform samples 𝑢 ∈ [0, 1] on the unit interval. At each step we add
Gaussian noise of some width 𝜎 > 0 as

𝑃(𝑢 → 𝑢′) = 1
𝜎
√

2𝜋
𝑒−

1
2
(𝑢′−𝑢)2

2𝜎2 (B.5)

then implement reflective boundary conditions on the interval. At each step we can then
simply transform this unit interval samples into samples of 𝑥 that are highly correlated
as 𝑥 = 𝐹−1(𝑢). The choice of step size 𝜎 here is arbitrary, and is a compromise between
not being too large to avoid rejections, while not being too small to efficiently explore the
space.

For the partition b, although we could again sample directly from the distribution
Eq. (B.1) fairly easily, we will construct a Markov chain of local moves over the space of
partitions that converges to the appropriate distribution. This is a fairly complicated task,
as these proposals must be able to change not only the assignments of the nodes to each
group but also change the number of groups 𝑞. Here we summarize the Markov chain
used by [116] for this purpose.

The scheme consists of two types of Monte Carlo moves, simplified as:

• Type 1: If possible, choose a random pair of distinct groups 𝑟, 𝑠 then randomly
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choose a node from group 𝑟 to move into group 𝑠. If this act empties group 𝑟,
remove that group and relabel the nodes appropriately.

• Type 2: Choose a random group 𝑠 and then a random node from that group to move
a new group on its own. If this empties group 𝑠 relabel appropriately.

If we then propose a Type 1 move with probability 1 − 1/𝑛 and a Type 2 move with
probability 1/𝑛, the resulting Markov chain will converge to the distribution 𝑃(b).

We can now make proposals to change the partition b and the continuous parameter 𝑥
respecting their prior distributions. In practice, we propose changes to the partition b

a factor 𝑛 times more often than to each continuous parameter 𝑥 since the partition is
effectively a separate parameter on each node. After attenuating the samples by the
likelihood using the accept/reject step we are then left with a Markov chain that will
converge to the appropriate posterior distribution.

To interpret the results from this chain as representative independent samples from the
posterior distribution, we measure the auto-correlations between the samples to estimate
the mixing time, then only record samples with a gap between them on that order. The
added time needed to wait between samples in large systems is the main computational
impediment to applying these types of Bayesian techniques to very large systems, although
we are able to get fairly consistent results on circa 2025 consumer hardware for networks
with tens of thousands of nodes in this work.

B.7 Consensus clustering

In this appendix we describe how posterior distributions over possible group partitions
are summarized into a single consensus clustering. Our goal in this task is to find a single
partition that best reflects the typical behavior of the full posterior distribution.

For a given partition b we can define an 𝑛 × 𝑛 coincidence matrix 𝐶[b] whose entries
reflect whether two nodes belong to the same group:

𝐶[b]𝑖 𝑗 = 𝛿𝑏𝑖𝑏 𝑗 . (B.6)

Given𝑇 sampled partitions b𝑡 for 𝑡 = 1, ..., 𝑇we can then compute the aggregate coincidence
matrix as the average

C̄ =
1
𝑇

𝑇∑
𝑡=1

C[b𝑡]. (B.7)
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Figure B.1: Consensus clustering found by the general degree-corrected SBM on the
network of 𝑛 = 105 books shown in Figure 2.2c. (a) Entries of the aggregate coincidence
matrix C̄ taken from the posterior distribution. (b) The coincidence matrix of the found
consensus clustering b∗, defined by closeness to the aggregate coincidence.

Entry 𝐶̄𝑖 𝑗 of this aggregate matrix then gives the fraction of samples where nodes 𝑖 and 𝑗

belong to the same group.
In principle, we would like for our consensus clustering to reflect this posterior distri-

bution. If two nodes are typically in the same group across the posterior distribution, they
should be placed in the same group in the consensus clustering. Inevitably restricting to
a single consensus clustering can not capture the full range of possible aggregate coinci-
dence matrices, for example that two nodes belong to the same group only a fraction of
the time, we can only hope that the consensus is an approximation of the truth.

We then look to find the partition b∗ whose coincidence matrix is closest to the aggregate
coincidence matrix in an 𝐿2 (or Frobenius) sense,

b∗ = argminb

����C[b] − C̄
����

2. (B.8)

In practice, this distance is optimized over the samples b𝑡 taken to inform the coincidence
matrix itself. The overall complexity of these operations is therefore 𝑂(𝑇𝑞2), the cost
to construct the aggregate coincidence matrix. Figure B.1 shows the results of these
coincidence matrices to summarize an SBM posterior distribution.
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B.8 General posterior-predictive

In this appendix we write out the full posterior-predictive distribution of the stochastic
block model incorporating both the general degree correction of Section 2.1 and the
assortative generalizations of Section 2.2. The posterior-predictive distributions of the
particular models that this form generalizes can be found by plugging in the corresponding
parameter values given in Tables 1.2 and 2.3.

Suppose that we would like to compute the posterior predictive distribution over
possible testing data sets Atest given a training data set Atrain and a factor 𝑓 ≥ 0 that
accounts for the relative overall density of the two data sets. For example in the 80/20
cross-validation splits into training and testing data sets used in this thesis, this factor
is 𝑓 = 0.25. This factor relates how we extrapolate the weight matrix of the training data
to the testing data as ωtest = 𝑓ωtrain.

Integrating and summing over all latent parameters the posterior predictive can be
written as

𝑃(Atest|Atrain, 𝑓 )
=

∑
b

∫
𝑃(Atest|θ, 𝑓ω, b, 𝛼, 𝜌in, 𝜌out,𝜆in,𝜆out)

× 𝑃(θ,ω, b, 𝛼, 𝜌in, 𝜌out,𝜆in,𝜆out|Atrain)𝑑θ𝑑ω𝑑𝛼𝑑𝜌in𝑑𝜌out𝑑𝜆in𝑑𝜆out

=
∑
b

∫
𝑃(Atest|Atrain, b, 𝛼, 𝜌in, 𝜌out,𝜆in,𝜆out, 𝑓 ) (B.9)

× 𝑃(b, 𝛼, 𝜌in, 𝜌out,𝜆in,𝜆out|Atrain)𝑑𝛼𝑑𝛾𝑑𝜌in𝑑𝜌out.

In the last line of this equation we have integrated over the node weights θ and the weight
matrix ω to obtain

𝑃(Atest|Atrain, b, 𝛼, 𝜌in, 𝜌out,𝜆in,𝜆out, 𝑓 ) (B.10)

= 𝑃(Atest|ktest,M test, b) (B.11)

× 𝑃(M test|M train,n, 𝜌in, 𝜌out,𝜆in,𝜆out, 𝑓 ) (B.12)

× 𝑃(ktest|ktrain,mtest,mtrain,n, 𝛼). (B.13)

This expression contains a stub-matching likelihood of the network

𝑃(Atest|ktest,M test, b) =
∏

𝑖 𝑘
test
𝑖 !

∏
𝑟<𝑠 𝑀

test
𝑟𝑠 !

∏
𝑟 𝑀

test
𝑟𝑟 !!∏

𝑖< 𝑗 𝐴
test
𝑖 𝑗 !

∏
𝑖 𝐴

test
𝑖𝑖 !!

∏
𝑟 𝑚

test
𝑟 !

(B.14)
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and negative binomial distributions of the edge count matrix entries

𝑃(M test|M train,n, 𝜌in, 𝜌out,𝜆in,𝜆out, 𝑓 ) (B.15)

=
∫

𝑃(M test| 𝑓ω,n, 𝜌in, 𝜌out,𝜆in,𝜆out)𝑃(ω|M train,n, 𝜌in, 𝜌out,𝜆in,𝜆out)𝑑ω

=
∏
𝑟<𝑠

(
𝑀test
𝑟𝑠 +𝑀train

𝑟𝑠 + 𝜆out − 1
𝑀train
𝑟𝑠 + 𝜆out − 1

) ( 𝑓 𝜌out𝑛𝑟𝑛𝑠)𝑀test
𝑟𝑠 (𝜌out𝑛𝑟𝑛𝑠 + 𝜆out)𝑀train

𝑟𝑠 +𝜆out

((1 + 𝑓 )𝜌out𝑛𝑟𝑛𝑠 + 𝜆out)𝑀test
𝑟𝑠 +𝑀train

𝑟𝑠 +𝜆out

×
∏
𝑟

(
𝑀test
𝑟𝑟 /2 +𝑀train

𝑟𝑟 /2 + 𝜆in − 1
𝑀train
𝑟𝑟 /2 + 𝜆in − 1

) ( 𝑓 𝜌in𝑛2
𝑟/2)𝑀test

𝑟𝑟 /2(𝜌in𝑛2
𝑟/2 + 𝜆in)𝑀train

𝑟𝑟 /2+𝜆in

((1 + 𝑓 )𝜌in𝑛2
𝑟/2 + 𝜆in)𝑀test

𝑟𝑟 /2+𝑀train
𝑟𝑟 /2+𝜆in

with expectations

E𝑀test
𝑟𝑠 =



𝑓 𝜌out𝑛𝑟𝑛𝑠

𝑀train
𝑟𝑠 +𝜆out

𝜌out𝑛𝑟𝑛𝑠+𝜆out
𝑟 ≠ 𝑠

𝑓 𝜌in𝑛2
𝑟/2𝑀

train
𝑟𝑟 /2+𝜆in

𝜌in𝑛2
𝑟 /2+𝜆in

𝑟 = 𝑠
. (B.16)

We note here that the factor 𝑓 just leads to an overall scaling of the edge count matrix.
Also, for the homogeneity parameters 𝜆in = 𝜆out = 1, as found in the simple assortative
SBM, these negative binomial distributions simplify to a geometric distributions of the
same means.

The predicted degree distribution is a Dirichlet-multinomial distribution

𝑃(ktest|ktrain,mtest,mtrain,n, 𝛼) = (B.17)
∏
𝑟

(
𝑚test
𝑟 + 𝑚train

𝑟 + 𝑛𝑟𝛼 − 1
𝑚train
𝑟 + 𝑛𝑟𝛼 − 1

)−1 ∏
𝑖∈𝑟

(
𝑘test
𝑖 + 𝑘train

𝑖 + 𝛼 − 1
𝑘train
𝑖 + 𝛼 − 1

)
(B.18)

with expectations

E𝑘test
𝑖 = 𝑚test

𝑏𝑖

𝑘train
𝑖 + 𝛼

𝑚train
𝑏𝑖

+ 𝑛𝑏𝑖𝛼
(B.19)

and Dirichlet parameters

𝛼𝑖 = 𝑘train
𝑖 + 𝛼. (B.20)

To compute the final posterior-predictive, the integral Eq. (B.9) is then approximated
by summing over MCMC samples of the parameters drawn from the training data poste-
rior 𝑃(b, 𝛼, 𝜌in, 𝜌out,𝜆in,𝜆out|Atrain).
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B.9 Hierarchical degree prior

The microcanonical formulation of the stochastic block model often uses a hierarchical
prior [107] on the degree distribution within each group in a manner that does not cleanly
fit into our general degree-correction. In this appendix, however, we demonstrate a
choice of in-group degree homogeneity 𝛼in that approximates this hierarchical prior, and
show that in most of the data sets we consider this type of degree-correction is therefore
excluded.

The hierarchical prior of the degrees k𝑟 within a group 𝑟 of 𝑛𝑟 nodes of total degree 𝑚𝑟

is defined as

𝑃(k𝑟|𝑚𝑟 , 𝑛𝑟) = 𝑃(k𝑟|η)𝑃(η|𝑚𝑟 , 𝑛𝑟) (B.21)

where the entries of η contain the number of vertices in group 𝑟 of each degree. This η

therefore represents a restricted partition of 𝑚𝑟 into at most 𝑛𝑟 integers. In this prior the
vector η is distributed uniformly among the 𝑞(𝑚𝑟 , 𝑛𝑟) such restricted partitions as

𝑃(η|𝑚𝑟 , 𝑛𝑟) = 𝑞(𝑚𝑟 , 𝑛𝑟)−1. (B.22)

Finding 𝑞(𝑚𝑟 , 𝑛𝑟) is a combinatorially difficult problem, although well-behaved approxi-
mations of it exist. Given the node countsη, the degrees are then multinomially distributed
among the possible ways that the chosen degrees can be assigned to the 𝑛𝑟 nodes as

𝑃(k𝑟|η) =
∏𝑚𝑟

𝑘=0 𝜂𝑘!
𝑛𝑟 !

. (B.23)

The non-analyticity of this distribution means that no choice of 𝛼in will make it equal to
our analytic prior Eq. (2.20), so we will need to resort to an approximation to compare the
performance of the priors. Our strategy is to choose 𝛼in so that the two priors exhibit the
same behavior in the limit of large size and total degree 𝑛𝑟 , 𝑚𝑟 → ∞. As shown in [107],
in the 𝑛𝑟 → ∞ limit the average number of nodes 𝜂𝑘 with degree 𝑘 approaches

⟨𝜂𝑘⟩ ≈ 1
exp(𝑘𝜋/√6𝑚𝑟) − 1

. (B.24)

To repeat this calculation of the marginal distribution for our prior

k𝑟 ∼ DM(
𝑛𝑟︷      ︸︸      ︷

𝛼in, ..., 𝛼in) (B.25)
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we first make use of the aggregation property of the Dirichlet-multinomial distribution to
show the distribution of the degree of a single node 𝑘 (and its remainder) is

(𝑘, 𝑚𝑟 − 𝑘) ∼ DM(𝛼in, (𝑛𝑟 − 1)𝛼in). (B.26)

The marginal distribution of the degree 𝑘 is therefore

𝑃(𝑘) = Γ(𝑚𝑟 + 1)Γ(𝑛𝑟𝛼in)
Γ(𝑚𝑟 + 𝑛𝑟𝛼in)

Γ(𝑘 + 𝛼in)
Γ(𝛼in)Γ(𝑘 + 1)

Γ(𝑚𝑟 − 𝑘 + (𝑛𝑟 − 1)𝛼)
Γ((𝑛𝑟 − 1)𝛼)Γ(𝑚𝑟 − 𝑘 + 1) . (B.27)

If we consider this distribution in the limit of infinite group size 𝑛𝑟 → ∞, the concen-
tration parameter must scale as 𝛼in = 𝑏

√
𝑚𝑟

𝑛𝑟
for some 𝑏 > 0 to give a fixed limiting count of

nodes of a given degree,

⟨𝜂𝑘⟩ = 𝑛𝑟𝑃(𝑘) →
Γ(𝑚𝑟 + 1)Γ(𝑚𝑟 − 𝑘 + 𝑏√𝑚𝑟)𝑏√𝑚𝑟

Γ(𝑚𝑟 − 𝑘 + 1)Γ(𝑚𝑟 + 𝑏√𝑚𝑟)𝑘 . (B.28)

Although this 𝑛𝑟 → ∞ form is not identical to the hierarchical Eq. (B.24), in the large total
degree limit 𝑚𝑟 → ∞ distribution it becomes

⟨𝑛𝑘⟩ ≈ 𝑏
√
𝑚𝑟

𝑘
. (B.29)

Matching this to the behavior of the hierarchical prior in the same 𝑚𝑟 → ∞ limit, we
find that for the choice

𝛼ℎ =
√

6𝑚𝑟

𝜋𝑛𝑟
. (B.30)

the hierarchical and general degree-corrected prior share the same limiting behavior. Fig-
ure B.2 plots example sampled degree distributions from the hierarchical and general
priors for parameter values along this limit, and we can indeed observe similar distribu-
tions for this choice of parameter.

In Table B.1 we compare these approximate values of the in-group degree homogeneity
t the values inferred by the general degree-corrected model. To obtain a single parameter
value for he full network, rather than each individual group, we further assume the nodes
are split into 𝑞 equally sized groups so that

𝛼ℎ =
6𝑝𝑞
𝜋
. (B.31)
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Figure B.2: Sampled degree distributions over 𝑛𝑟 = 10000 nodes of average degree
𝑚𝑟/𝑛𝑟 = 10 from the hierarchical prior and general prior for the concentration
parameter 𝛼ℎ . Both distributions are compared against the asymptotic distribution
Eq. (B.24).

Across the data sets we consider, most data sets exclude this special case, suggesting that
the general degree correction is favored over the hierarchical prior. After transforming
to an effective levels of in-group degree inequality 𝐺ℎ , we observe that in most cases the
hierarchical prior assumes a much more unequal distribution of degrees within groups
than is present in the networks.

B.10 Resolution limit

In this appendix we derive the resolution limit for the usual SBM and show how it is
circumvented by the assortative SBM of Section 2.2.

The illustration of the resolution limit used in Figure 2.5 is a special case of a larger
class of examples used to show the resolution limit. Suppose that a network is divided
into 𝑞 entirely disconnected groups that serve as the true planted partition. We consider
a symmetric example where the nodes and edges are equally split among the groups, so
that group 𝑟 has 𝑛𝑟 = 𝑛/𝑞 nodes and total degree 𝑚𝑟 = 2𝑚/𝑞. The only non-zero entries
of the edge count matrix M are then the diagonal 𝑀𝑟𝑟 = 2𝑚/𝑞. The network thus has an
in-group density 𝜌in = 𝑞 2𝑚

𝑛2 , out-group density 𝜌out = 0 and overall density 𝜌 = 2𝑚
𝑛2 .

To show the resolution limit, we would like to compare the description length of this
true partition into 𝑞 groups with a coarsening into 𝑞∗ < 𝑞 groups where sets of 𝑞

𝑞∗ original
groups are merged. In this new partition the edge count matrix is still diagonal, with
entries 𝑀𝑟𝑟 = 2𝑚/𝑞∗. For a model to pass this check and identify the original partition,
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Data set 𝐺in 𝐺ℎ 𝛼ℎ
Football (0.00, 0.03) 0.40 1.77
Power grid (0.00, 0.02) 0.99 0.01
Karate (0.00, 0.16) 0.55 0.76
Books (0.00, 0.29) 0.49 1.07
Food web (0.07, 0.11) 0.16 12.09
Friends (0.14, 0.21) 0.45 1.29
Dolphins (0.12, 0.26) 0.59 0.63
Neurons (0.23, 0.28) 0.43 1.49
Proteins (0.27, 0.29) 0.94 0.05
Coauthors (0.28, 0.31) 0.95 0.04
Words (0.26, 0.35) 0.55 0.78
Internet (0.33, 0.35) 0.97 0.02
E-mail (0.41, 0.43) 0.69 0.37
Blogs (0.59, 0.61) 0.60 0.60

Table B.1: Data sets of Table 2.2 along with an inter-quartile range of the inferred Gini
coefficient of in-group degree inequality 𝐺in. These are compared against the values of
the index 𝐺ℎ and the concentration parameter 𝛼ℎ that would asymptotically recover the
behavior of the hierarchical degree prior as in Eq. (B.31). Most cases exclude this special
case in favor of the general degree-corrected model.

the description length of the coarsening must be larger than that of the original partition
for all 𝑞∗ < 𝑞. Otherwise the coarse partition would be preferred over the truth. The usual
SBM fails this check in the example of Figure 2.5 and prefers 𝑞∗ = 4 over 𝑞 = 8.

To show when this occurs we analyze the description length of the SBM. To get analytic
control over the description length we consider it in a constant degree limit of large
network size 𝑛, 𝑚 → ∞. We also assume that the number of communities in the network
grows sublinearly as 𝑞 ∼ 𝑜(𝑛) so that each community grows 𝑚

𝑞 → ∞. Although this
excludes the limit where community size is constant, we will find the resolution limit of
the model well before this point.

This is a sparse graph limit, even within the groups as 𝜌in = 𝑞 2𝑚
𝑛2 = 𝑞𝑐2

2𝑚 → 0. We can
therefore assume that the graph is simple and expand the encoding cost of the network
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for small 𝑞 (or large 𝑚
𝑞 ) as

𝐻(A|M , b) = − log

[∏
𝑟

𝑀𝑟𝑟 !!
𝑛𝑚𝑟
𝑟

]

= 2𝑚 log
(
𝑛
𝑞

)
− 𝑞 log

[(2𝑚/𝑞)!!]
≈ 𝑚

[
1 + log

(
𝑛2

2𝑚𝑞

)]
+ 𝑂(𝑚/𝑞). (B.32)

The edge count matrix encoding dominates the total information cost for large 𝑞, so we
instead expand it in small 𝑚/𝑞 as

𝐻(M |n, 𝑞) = 𝑞(𝑞 − 1)
2 log

(
2𝑚/𝑞2 + 1

) + 𝑞 [(𝑚/𝑞 + 1) log(𝑚/𝑞2 + 1) − 𝑚/𝑞 log(𝑚/𝑞2)]
= 𝑚

[
1 − log

(
𝑚
𝑞2

)]
+ 𝑂(𝑚/𝑞). (B.33)

To complete this approximation, we add a non-perturbative correction to match the small 𝑞
behavior 𝐻(M |n, 𝑞 = 0) = 0 as

𝐻(M |n, 𝑞) = 𝑚

[
1 − log

(
𝑚

𝑞2 + 𝑚/𝑒
)]

+ 𝑂(𝑚/𝑞). (B.34)

Taken together, these description lengths approximate the behavior of the description
length in this limit. Figure B.3a shows an example of this encoding cost for networks
with 𝑛 = 5000 nodes, 𝑚 = 10000 edges, and varying numbers of groups 𝑞. We can
observe that both the true description length and the approximation have a characteristic
"U" shape.

To find the minimum of this curve, we can differentiate the approximate description
length

𝜕𝑞𝐻(A|b, 𝜌) ≈ 𝑚
𝑞
𝑒𝑞2 − 𝑚
𝑒𝑞2 + 𝑚 (B.35)

and identify the critical number of communities 𝑞𝑐 =
√
𝑚/𝑒.

The critical number of communities 𝑞𝑐 =
√
𝑚/𝑒 therefore splits the number of com-

munities into two regimes. When 𝑞 < 𝑞𝑐 , no coarsening 𝑞∗ < 𝑞 will return a smaller
description length than the true partition. For 𝑞 > 𝑞𝑐 , however, the description length
will instead be minimized at 𝑞∗ = 𝑞𝑐 < 𝑞, and the model will not infer the true number of
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Figure B.3: (a) Plot of the description length of a fully assortative network as the number
of true groups 𝑞 varies. (b) True number of planted groups 𝑞 and the inferred number of
groups 𝑞∗. Beyond the resolution limit when 𝑞 > 𝑞𝑐 the usual SBM cannot infer more
than the critical number of groups.

groups. This effect is illustrated in Figure B.3b.
We can compare this to the behavior of the simple assortative SBM in the same limit.

This model shares the description length of the network 𝐻(A|M , b), although the infor-
mation cost of the edge count matrix is now

𝐻(M |n, 𝜌in, 𝜌out) = 𝑞
[(𝑚/𝑞 + 1) log(𝑚/𝑞 + 1) − 𝑚/𝑞 log(𝑚/𝑞)] (B.36)

= 𝑚

[
1 − log

(
𝑚

𝑞 + 𝑚/𝑒
)]

+ 𝑂(𝑚/𝑞). (B.37)

The derivative of the overall description length in the assortative model is then approxi-
mately

𝜕𝑞𝐻(A|b, 𝜌in, 𝜌out) ≈ − 𝑚2

𝑒𝑞2 + 𝑚𝑞 , (B.38)

which is always negative, indicating that in this regime there is no smaller number of
communities 𝑞∗ < 𝑞 preferred over the true partition, and the resolution limit is alleviated.

There are still some limitations of the number of communities we can infer in the assor-
tative model. If we include the influence of the prior 𝑃(b) on the group structure, the MAP
estimate will have at most𝑂(𝑚/log(𝑚)) communities, far more than the𝑂(√𝑚) identified
by the usual model. Additionally, if the communities are not completely assortative, and
so the model must deal with a noisy signal, the assortative models are still limited by the
detectability threshold discussed in Appendix A.5.
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B.11 Synthetic tests

In our "Symmetric" synthetic tests of Section 2.2.5, we consider networks of a fixed mean
degree 𝑐 and fixed signal to noise ratio (SNR)

SNR =
𝑛2(𝜌in − 𝜌out)2

𝑐𝑞2 . (B.39)

This choice is made to make the challenge of reconstructing the true groups a similar
difficulty over all the examples regardless of the number of groups 𝑞. This choice results
in the densities

𝜌in =
𝑐
𝑛

(
1 + (𝑞 − 1)

√
SNR
𝑐

)
, 𝜌out =

𝑐
𝑛

(
1 −

√
SNR
𝑐

)
(B.40)

which then inform the edge count matrix entries as

𝑀𝑟𝑠 =
𝑛2

𝑞2 ×


𝜌in 𝑟 = 𝑠

𝜌out 𝑟 ≠ 𝑠.
(B.41)

We note that SNR = 𝑐 recovers the usual resolution limit test of completely disconnected
groups as 𝜌out = 0. Our choice of 𝑐 = 5 and SNR = 3 is slightly more challenging than
this case, although we observe in Figure 2.7 that the usual SBM breaks down at a similar
resolution limit as we would expect from the analysis in Section B.10, 𝑞 =

√
𝑚/𝑒 ≈ 30.3

for 𝑚 = 2500.
Admittedly, the use of the signal-to-noise ratio is slightly dubious in this context, espe-

cially as the number of groups approaches the total number of nodes. The detectability
threshold SNR > 1 tells us only when recoverability is possible in the limit of an infinitely
large network and a fixed number of groups [6]. Yet, this is a useful framework for our
purposes.

In our tests we also consider a "Ring" structure whose groups connect only as neighbors
along a ring and where there is no global assortative pattern, 𝜌in = 𝜌out. These conditions
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set the edge count matrix entries1

𝑀𝑟𝑠 =
𝑐𝑛
𝑞2 ×




1 𝑟 = 𝑠
𝑞−1

2 𝑟 = 𝑠 ± 1(mod 𝑞)
0 else.

(B.42)

Like the symmetric test, we then generate our synthetic networks on 𝑛 = 1000 nodes with
average degree 𝑐 = 5 for our tests.

B.12 Comparison to modularity

In this appendix we compare the assortativity inferred by our simple assortative SBM
presented in Section 2.2 to the modularity of the partitions it finds. We show that these
are related, yet contrasting measures of the overall strength of group structure in a network.

As discussed in Section 1.2.3, the modularity of a networkA over a partition bmeasures
the (normalized) number of edges 𝑚in within the groups above the number ⟨𝑚in⟩config

expected in the configuration model:

𝑄(A, b) = 𝑚in − ⟨𝑚in⟩config

𝑚
. (B.43)

Figure B.4 compares this modularity to the assortativity for the networks listed in
Table 2.2. We see that both measures qualitatively agree on which of the networks are
assortative (𝑄 > 0, 𝜌in > 𝜌out) and disassortative (𝑄 < 0, 𝜌in < 𝜌out) with the possible
exception of the "Proteins" network. The two measures, however, vary wildly in their
assessment of how assortative each network is. For instance, while the "Email" and
"Dolphins" data sets share a modularity of 𝑄 ≈ 0.25, the "Email" data set is strongly
assortative at 𝜌in/𝜌out ≈ 16, an order of magnitude greater than the weak 𝜌in/𝜌out ≈ 1.3
preference found in the dolphins.

To understand the source of this discrepancy we can consider the relationship between
the two measures in a simple test case. Suppose that the nodes are split into 𝑞 equal
groups. Of the 𝑛2

2 unique pairs of nodes in the network, 𝑛2

2𝑞 are between nodes of the same
group. At an in-group density of 𝜌in we therefore expect to observe 𝑚in = 𝜌in

𝑛2

2𝑞 edges
within the groups. If we further assume that the nodes all have the same degree, the
configuration model would expect that 1/𝑞 of the edges like within groups as ⟨𝑚in⟩config =

1For 𝑞 = 2 the off-diagonal entries are doubled.
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Figure B.4: Figure of inferred group assortativity 𝜌in/𝜌out versus the modularity 𝑄 of
partitions sampled by the simple ASBM. 𝑄 = 0 and 𝜌in/𝜌out = 1 are highlighted to
delineate between the assortative and disassortative regimes.

𝑚/𝑞. Assembling these expectations yields the typical modularity

𝑄 =
𝜌in𝑛2/(2𝑞) − 𝑚/𝑞

𝑚
=

1
𝑞

(
𝜌in

𝜌
− 1

)
. (B.44)

This simple example demonstrates a number of the patterns found in our real networks.
For one, when a network is assortative, 𝜌in > 𝜌, the modularity is positive, and the opposite
holds for disassortative networks. The modularity also scales inversely with the number
of groups when the assortativity is held fixed. If individuals maintain the same level
of assortative preference in their connections as the number of groups increases, fewer
connections are made inside groups since the groups become smaller. To maintain the
same overall ratio of edges within increasingly fragmented groups, individuals must adopt
a higher in-group preference to maintain the same in-group/out-group composition of
their interactions.

Returning to our earlier comparison, the "Email" network has 𝑞 = 23 groups while
the dolphins only have 4. For both networks to have a similar overall modularity, emails
must be sent with a far stronger assortative preference than the dolphins exhibit since the
relative sizes of the in-group and out-group vary drastically between the cases.

In summary, the assortativity directly measures the microscopic in-group preference
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nodes adopt whereas the modularity reflects the resulting global difference in the compo-
sition of edges within and between groups. Depending on the pattern of group affiliations,
the measures thus give complementary perspectives on the nature of the group structure.
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Appendix C

Supplementary Material for Chapter 3

C.13 Upper bound on the normalized mutual information

In this appendix we show that the value of the normalized mutual information measure
proposed in this paper is bounded above by 1:

NMIDM(𝑐;𝑔) = 𝐼DM(𝑐;𝑔)
𝐼DM(𝑔;𝑔) ≤ 1, (C.1)

and moreover that the exact equality is achieved if and only if 𝑐 and 𝑔 are identical up to a
permutation of their labels. These properties ensure that no candidate can receive a score
higher than that of the ground truth itself and enable us to interpret a score of 1 as equality
up to permutation. The ordinary non-reduced NMI, normalized as in Eq. (3.35), does not
have the same properties—as shown in Fig. 3.4, there are possible labelings 𝑐 that are
substantially different from 𝑔 but nonetheless give a conventional NMI of 1. It is possible
that the standard ("flat") reduced mutual information satisfies a bound like (C.1), but this
has not been proven. It is known to be violated if poor approximations of Ω(𝑛(𝑔), 𝑛(𝑐))
are used, so any proof would require an exact expression for Ω(𝑛(𝑔), 𝑛(𝑐)) or a sufficiently
good estimate. It is unclear whether current estimates are good enough, although we are
not aware of any violations of the relevant inequality when the estimate of Eq. (3.14) is
employed.
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To prove (C.1) we express the numerator and denominator as

𝐼DM(𝑐;𝑔) = 𝐼0(𝑐;𝑔) + 𝐻(𝑛(𝑔)|𝑛, 𝑞𝑔 , 𝛼𝑔)
− 𝐻(𝑛(𝑔𝑐)|𝑛(𝑐), 𝑞𝑔 , 𝛼𝑔|𝑐), (C.2)

𝐼DM(𝑔;𝑔) = 𝐼0(𝑔;𝑔) + 𝐻(𝑛(𝑔)|𝑛, 𝑞𝑔 , 𝛼𝑔)
− 𝐻(𝑛(𝑔𝑔)|𝑛(𝑔), 𝑞𝑔 , 𝛼𝑔|𝑔)

= 𝐻0(𝑔) + 𝐻(𝑛(𝑔)|𝑛, 𝑞𝑔 , 𝛼𝑔) − 𝑞𝑔 log 𝑞𝑔 , (C.3)

as in Eqs. (3.31) and (3.34). Then our desired bound can be rewritten as

log
∏

𝑠 𝑛
(𝑐)
𝑠 !∏

𝑟𝑠 𝑛
(𝑔𝑐)
𝑟𝑠 !

+ 𝐻(𝑛(𝑔𝑐)|𝑛(𝑐), 𝑞𝑔 , 𝛼𝑔|𝑐) ≥ 𝑞𝑔 log 𝑞𝑔.

(C.4)

The left-hand side of this inequality decreases when the entries of the contingency table
decrease. To demonstrate this we define a table 𝑛̃(𝑔𝑐) which is identical to the original
table 𝑛(𝑔𝑐) except that a single entry is decreased by 1: 𝑛̃(𝑔𝑐)𝑟𝑠 = 𝑛(𝑔𝑐)𝑟𝑠 − 1. With this change
the first term in Eq. (C.4) must decrease, since

log
∏

𝑠 𝑛
(𝑐)
𝑠 !∏

𝑟𝑠 𝑛
(𝑔𝑐)
𝑟𝑠 !

− log
∏

𝑠 𝑛̃
(𝑐)
𝑠 !∏

𝑟𝑠 𝑛̃
(𝑔𝑐)
𝑟𝑠 !

= log
𝑛(𝑐)𝑠
𝑛(𝑔𝑐)𝑟𝑠

≥ 0. (C.5)

Similarly, the second term in Eq. (C.4) also decreases if we make the further assumption
that

𝑛(𝑔𝑐)𝑟𝑠 ≥ 𝑛(𝑐)𝑠 /𝑞𝑔 , 𝑛(𝑔𝑐)𝑟𝑠 > 1. (C.6)
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Under these conditions we can bound the change in the second term by

𝐻(𝑛(𝑔𝑐)|𝑛(𝑐), 𝑞𝑔 , 𝛼𝑔|𝑐) − 𝐻(𝑛̃(𝑔𝑐)|𝑛̃(𝑐), 𝑞𝑔 , 𝛼𝑔|𝑐)

= log
(
𝑛(𝑐)𝑠 + 𝑞𝑔𝛼𝑔|𝑐 − 1

𝑞𝑔𝛼𝑔|𝑐 − 1

)
− log

(
𝑛̃(𝑐)𝑠 + 𝑞𝑔𝛼𝑔|𝑐 − 1

𝑞𝑔𝛼𝑔|𝑐 − 1

)

− log
(
𝑛(𝑔𝑐)𝑟𝑠 + 𝛼𝑔|𝑐 − 1

𝛼𝑔|𝑐 − 1

)
+ log

(
𝑛̃(𝑔𝑐)𝑟𝑠 + 𝛼𝑔|𝑐 − 1

𝛼𝑔|𝑐 − 1

)

= log
𝑛(𝑐)𝑠 + 𝑞𝑔𝛼𝑔|𝑐 − 1

𝑛(𝑐)𝑠
− log

𝑛(𝑔𝑐)𝑟𝑠 + 𝛼𝑔|𝑐 − 1

𝑛(𝑔𝑐)𝑟𝑠

≥ log
𝑛(𝑐)𝑠 + 𝑞𝑔𝛼𝑔|𝑐 − 𝑞𝑔

𝑛(𝑐)𝑠
− log

𝑛(𝑔𝑐)𝑟𝑠 + 𝛼𝑔|𝑐 − 1

𝑛(𝑔𝑐)𝑟𝑠

= log
𝑛(𝑐)𝑠 /𝑞𝑔 + 𝛼𝑔|𝑐 − 1

𝑛(𝑐)𝑠 /𝑞𝑔
− log

𝑛(𝑔𝑐)𝑟𝑠 + 𝛼𝑔|𝑐 − 1

𝑛(𝑔𝑐)𝑟𝑠

≥ 0,

(C.7)

where in the last step we have made use of (C.6) and the fact that log((𝑥 + 𝛼 − 1)/𝑥) is
monotonically decreasing in 𝑥 for all 𝑥 > 0.

Now we observe that if there is any entry of 𝑛(𝑔𝑐) such that 𝑛(𝑔𝑐)𝑟𝑠 > 1, then there must
be an entry 𝑛(𝑔𝑐)𝑟𝑠 ≥ 𝑛(𝑐)𝑠 /𝑞𝑔, i.e., it is greater than or equal to the average for its column. We
apply this observation repeatedly to decrement each non-zero entry of the table to 1 until
𝑛̃(𝑔𝑐)𝑟𝑠 = min

(
𝑛(𝑔𝑐)𝑟𝑠 , 1

)
, while at the same time ensuring that

log
∏

𝑠 𝑛
(𝑐)
𝑠 !∏

𝑟𝑠 𝑛
(𝑔𝑐)
𝑟𝑠 !

+ 𝐻(𝑛(𝑔𝑐)|𝑛(𝑐), 𝑞𝑔 , 𝛼𝑔|𝑐)

≥ log
∏

𝑠 𝑛̃
(𝑐)
𝑠 !∏

𝑟𝑠 𝑛̃
(𝑔𝑐)
𝑟𝑠 !

+ 𝐻(𝑛̃(𝑔𝑐)|𝑛̃(𝑐), 𝑞𝑔 , 𝛼𝑔|𝑐). (C.8)

This reduces the problem of showing the general inequality (C.4) to proving it for tables
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𝑛̃ whose entries are 0 or 1 only, which we can do as follows:

log
∏

𝑠 𝑛̃
(𝑐)
𝑠 !∏

𝑟𝑠 𝑛̃
(𝑔𝑐)
𝑟𝑠 !

+ 𝐻(𝑛̃(𝑔𝑐)|𝑛̃(𝑐), 𝑞𝑔 , 𝛼𝑔|𝑐)

=
∑
𝑠

[
log 𝑛̃(𝑐)𝑠 ! + log

(
𝑛̃(𝑐)𝑠 + 𝑞𝑔𝛼𝑔|𝑐 − 1

𝑞𝑔𝛼𝑔|𝑐 − 1

)

−
∑
𝑟

log
(
𝑛̃(𝑔𝑐)𝑟𝑠 + 𝛼𝑔|𝑐 − 1

𝛼𝑔|𝑐 − 1

)]

=
∑
𝑠

[
log(𝑛̃(𝑐)𝑠 + 𝑞𝑔𝛼𝑔|𝑐 − 1)! − log(𝑞𝑔𝛼𝑔|𝑐 − 1)!

− 𝑛̃(𝑐)𝑠 log 𝛼𝑔|𝑐
]

≥
∑
𝑠


𝑛̃(𝑐)𝑠 −1∑
𝑡=0

log(𝑞𝑔𝛼𝑔|𝑐 + 𝑡) − 𝑛̃(𝑐)𝑠 log 𝛼𝑔|𝑐


(C.9a)

≥
∑
𝑠

𝑛̃(𝑐)𝑠
[
log(𝑞𝑔𝛼𝑔|𝑐) − log 𝛼𝑔|𝑐

]
(C.9b)

≥
∑
𝑠

𝑛̃(𝑐)𝑠 log 𝑞𝑔 ≥ 𝑞𝑔 log 𝑞𝑔 , (C.9c)

where in the final step we have made use of the fact that each of the 𝑞𝑔 groups must contain
at least one object, so there must be at least 𝑞𝑔 nonzero entries in 𝑛(𝑔𝑐) and hence also in 𝑛̃(𝑔𝑐).
We also observe that the inequalities (C.9a–C.9c) are saturated only when 𝑛̃(𝑐)𝑠 = 1 for all 𝑠
and 𝑞𝑐 = 𝑞𝑔. These conditions together imply that the contingency table 𝑛(𝑔𝑐) must be
diagonal, and hence that the labelings 𝑐 and 𝑔 are equivalent up to a permutation of their
labels. The reverse conclusion, that RMIDM(𝑐;𝑔) = 1 when 𝑐 and 𝑔 are equivalent up to a
permutation, also follows since our measure is invariant under label permutations.

Finally, we note that if we instead normalize the reduced mutual information symmet-
rically according to

NMI(𝑆)DM(𝑐;𝑔) = 𝐼DM(𝑐;𝑔) + 𝐼DM(𝑔; 𝑐)
𝐼DM(𝑔;𝑔) + 𝐼DM(𝑐; 𝑐) , (C.10)

then the results of this section also ensure that NMI(𝑆)DM(𝑐;𝑔) ≤ 1 and that this bound is
saturated only for 𝑐 and 𝑔 equivalent up to a permutation. This symmetric normaliza-
tion may be more appropriate when comparing two labelings neither of which can be
considered a ground truth.
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C.14 Clustering and permutation invariance

In this paper we have focused on the comparison of different labelings of a set of objects, but
the most common applications of the mutual information are actually to the comparison
of clusterings, i.e., partitions of objects into some number 𝑞𝑔 of (unlabeled) groups. One can
easily represent a clustering by arbitrarily assigning integer labels 1 . . . 𝑞𝑔 to the groups
and then recording the label of the group to which each object belongs, but the mapping
from clusterings to labelings is not unique: here are 𝑞𝑔! permutations of the labels that
correspond to the same clustering. This means that the information cost of transmitting
a labeling, as discussed in this paper, is larger than the information cost of transmitting
a clustering. In the most extreme case, suppose that we want to transmit the unique
clustering of 𝑛 objects into 𝑛 distinct groups, with a single object in each group. There are
𝑛! possible labelings that represent this clustering, so the information cost to transmit any
one of them is 𝐻0(𝑔) = log 𝑛! as in Eq. (3.6). Yet there is only a single clustering that places
each object in its own group, so in principle the information cost should be log 1 = 0. Thus
the label-based approach grossly overestimates the true information cost in this case. As
we argue in this appendix, however, the amount of the overestimate is a constant that
plays no role in typical applications, and cancels completely from the mutual information
itself, so in practice the measures described in this paper give correct and useful answers
as is.

What is the actual information content of a clustering, not just of the labeling that rep-
resents it? To answer this question we adopt a notation that directly describes clusterings
rather than labelings. For a given labeling 𝑔 with 𝑞𝑔 labels we define the equivalence
class 𝑔 to be the set of all 𝑞𝑔! variants of 𝑔 obtained by permutations of the label values,
including the original permutation 𝑔 itself. By combining all these permutations into a
single object, the equivalence class directly represents the clustering of which labeling 𝑔

is a manifestation. With this definition we can adapt the encoding schemes for labelings
described in this paper to give encoding schemes for clusterings.

Any encoding of labelings effectively defines a probability distribution over all labelings
via 𝑃(𝑔) = 𝑒−𝐻(𝑔). Since the schemes of this paper are all invariant under the 𝑞𝑔! possible
permutations of the labels, we can easily sum up the resulting probability weight over
all labelings that represent a given clustering to find the induced probability distribution
over clusterings:

𝑃(𝑔) =
∑
𝑞∈𝑔

𝑃(𝑔) = 𝑞𝑔!𝑃(𝑔). (C.11)
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Under this distribution the cost to directly transmit the clustering 𝑔 independent of its
label assignment is

𝐻(𝑔) = − log𝑃(𝑔) = 𝐻(𝑔) − log 𝑞𝑔! (C.12)

Thus, if we could find a way to transmit only the clustering we would realize an information
savings of log 𝑞𝑔! compared with the transmission of an arbitrary labeling.

A practical way to achieve this is simply to agree upon a single unique labeling that
will represent each possible clustering. Only these agreed labelings will be transmitted
and no others. By definition this reduces the number of possible labelings by a factor of
𝑞𝑔! and hence reduces the information by log 𝑞𝑔!, as above.

To give an explicit example of such an encoding, we could stipulate that every labeling
must have the following two properties:

1. Groups are labeled in order of increasing size, so that group 1 is the smallest and
group 𝑞𝑔 is the largest.

2. If two groups have the same size, the tie is broken by giving the smaller group label
to the group that appears first in the ordered list of all objects.

For every clustering there is only one labeling that satisfies these rules, and any labeling
that does not satisfy them can easily be converted into one that does. For example,
𝑔 = 33132112 becomes 22321331.

If enforcement of the above rules is denoted by𝑅, the information content of a clustering
is

𝐻(𝑔) = 𝐻(𝑔|𝑅), (C.13)

and with these definitions we can now explicitly calculate the information needed to
transmit a clustering. As before, we transmit the clustering in three steps. In the first
step we transmit the number of groups 𝑞𝑔. The fact that a labeling respects the rules 𝑅
has no effect on 𝑞𝑔, so the information required for this step is unchanged from before:
𝐻(𝑞𝑔|𝑅) = 𝐻(𝑞𝑔).

In the second step we transmit the group sizes 𝑛(𝑔), and here there is a change because
rule 1 above implies that the group sizes must appear in non-decreasing order, and hence
the possible values of 𝑛(𝑔) are drawn only from the set of such non-decreasing candidates, a
subset of the

( 𝑛−1
𝑞𝑔−1

)
possible vectors that sum to 𝑛. We further note that not all of these non-

decreasing vectors will occur with equal frequency. The number of ways one such vector
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can occur in our transmission process is equal to the number of unique starting vectors
that can be permuted into the given non-decreasing form. If we define the multiplicity of
the group sizes as

𝑀𝑡 =
��{𝑟|𝑛(𝑔)𝑟 = 𝑡}��, 𝑡 = 1 . . . 𝑞𝑔 , (C.14)

then there are 𝑞𝑔!/∏𝑡 𝑀𝑡 ! such permutations. So the probability that any individual one
will occur is (𝑞𝑔!/∏𝑡 𝑀𝑡 !)/

( 𝑛−1
𝑞𝑔−1

)
and the information cost to transmit 𝑛(𝑔) is minus the log

of this probability:

𝐻(𝑛(𝑔)|𝑞𝑔 , 𝑅) = log
[(
𝑛 − 1
𝑞𝑔 − 1

)∏
𝑡 𝑀𝑡 !
𝑞𝑔!

]
. (C.15)

In the third step of the transmission process we transmit the labeling itself, and here too
the information cost is modified because of our rules. Whenever two groups of the same
size are present, we know that the group appearing first must have the smaller group
label because of rule 2 above and hence we need only consider labelings that satisfy this
requirement. This leaves only a fraction 1/∏𝑡 𝑀𝑡 ! of the original 𝑛!/∏𝑟 𝑛

(𝑔)
𝑟 ! labelings,

giving an information cost of

𝐻(𝑔|𝑛(𝑔), 𝑅) = log 𝑛!∏
𝑟 𝑛

(𝑔)
𝑟 !

∏
𝑡 𝑀𝑡 !

. (C.16)

Combining these terms, the total information cost to transmit the clustering is

𝐻(𝑔) = 𝐻(𝑔|𝑅)
= 𝐻(𝑞𝑔|𝑅) + 𝐻(𝑛(𝑔)|𝑞𝑔 , 𝑅) + 𝐻(𝑔|𝑛(𝑔), 𝑅)
= 𝐻(𝑞𝑔) + 𝐻(𝑛(𝑔)) + log

∏
𝑡

𝑀𝑡 ! − log 𝑞𝑔!

+ 𝐻(𝑔|𝑛(𝑔)) − log
∏
𝑡

𝑀𝑡 !

= 𝐻(𝑔) − log 𝑞𝑔! (C.17)

as expected.
Taking, for instance, our earlier example in which there are 𝑛 groups of one object each,

all groups have the same size, so by rule 2 above they are simply labeled in order of their
appearance 123 . . . 𝑛. This is the unique valid labeling with this set of group sizes, so
setting 𝑞𝑔 = 𝑛, the information cost is correctly given as 𝐻(𝑔)− log 𝑞𝑔! = log 𝑛!− log 𝑛! = 0.
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The same discounted information cost also applies to the conditional entropy. Suppose
we are given a candidate clustering denoted by equivalence class 𝑐 and represented as
above by a unique labeling 𝑐 within that class, such as the one obeying the rules 𝑅. Since
our encoding schemes are invariant under label permutations, all labelings in 𝑐 are equally
informative, including the one 𝑐 that we have selected, and hence

𝐻(𝑔|𝑐) = 𝐻(𝑔|𝑐). (C.18)

Using the same argument as before, the conditional information cost of the clustering is
then given by

𝐻(𝑔|𝑐) = 𝐻(𝑔|𝑐) − log 𝑞𝑔! (C.19)

and hence the mutual information between two clusterings is given by

𝐼(𝑐;𝑔) = 𝐻(𝑔) − 𝐻(𝑔|𝑐)
=

[
𝐻(𝑔) − log 𝑞𝑔!

] − [
𝐻(𝑔|𝑐) − log 𝑞𝑔!

]
= 𝐻(𝑔) − 𝐻(𝑔|𝑐) = 𝐼(𝑐;𝑔). (C.20)

Thus, the mutual information between clusterings is the same as between any corre-
sponding pair of labelings. In practice, this means that we never need to consider mutual
information measures between clusterings. Calculating the mutual information between
labelings, as described in this paper, is more straightforward and gives the same result.

Using this clustering perspective we can also show that the encoding we propose in
this paper is near optimal in the important case where 𝑐 = 𝑔. All the encoding schemes
we consider are invariant under label permutations, which implies that

𝐻(𝑔|𝑔) = 𝐻(𝑔|𝑔) = 𝐻(𝑔|𝑔) + log 𝑞𝑔! ≥ log 𝑞𝑔! (C.21)

From Eqs. (3.31) and (3.33) our Dirichlet-multinomial encoding has cost

𝐻DM(𝑔|𝑔) = 𝐻(𝑞𝑔) + 𝐻(𝑛(𝑔𝑔)|𝑛(𝑔), 𝛼𝑔|𝑔) + 𝐻(𝑔|𝑐, 𝑛(𝑔𝑔))
= log 𝑛 + 𝑞𝑔 log 𝑞𝑔. (C.22)

If we accept the cost log 𝑛 of transmitting the number of groups 𝑞𝑔 as a necessary price
of doing business, this value for 𝐻DM(𝑔|𝑔) very nearly saturates the bound in Eq. (C.21),
since the gap between 𝑞𝑔 log 𝑞𝑔 and log 𝑞𝑔! is only of order O(𝑞𝑔). By contrast, the flat
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Figure C.1: (a) The absolute change in the information cost of transmitting the vector of
true group sizes 𝑛(𝑔) between the standard flat encoding and the optimized
Dirichlet-multinomial encoding. In contrast with Fig. 3.7, the information cost 𝐻(𝛼𝑔) = 4
bits for transmitting the Dirichlet-multinomial parameter is included in this comparison.
(b) The absolute change in the information cost of transmitting the contingency
table 𝑛(𝑔𝑐) between the standard flat encoding and the Dirichlet-multinomial encoding
(including 𝐻(𝛼𝑔|𝑐)). The different curves show the distribution for different levels of
similarity between the ground-truth and candidate labelings, as measured by the
normalized mutual information. The horizontal scale is linear between −10 and 10 and
logarithmic outside that range. In both panels the densities of cases are transformed and
smoothed as in Fig. 3.7.

encoding is far from saturating the bound in this case, explaining its poorer performance
in the important regime where 𝑐 ≃ 𝑔. Equation (C.22) also helps explain a point made in
Section 3.1.2.3, that it is rarely beneficial to constrain both the row and column sums of
the contingency table, since the Dirichlet-multinomial encoding is already near-optimal
while constraining only the columns.
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C.15 Choosing and transmitting the Dirichlet-multinomial
parameter

In computing the information costs 𝐻(𝑛(𝑔)|𝑞𝑔 , 𝛼𝑔) and 𝐻(𝑛(𝑔𝑐)|𝑛(𝑐), 𝑞𝑔 , 𝛼𝑔|𝑐) that appear in
Eqs. (3.26) and (3.30) we have used the values of the Dirichlet-multinomial parameters 𝛼𝑔

and 𝛼𝑔|𝑐 that minimize those costs. These values were found by numerical optimization,
using golden-ratio search in the space of log 𝛼 with a starting bracket of 𝛼 ∈ [10−3, 103].
Since the golden-ratio method converges exponentially, the complexity of this calcula-
tion grows logarithmically in the desired accuracy. In practice we converge to machine
precision within about 50 iterations.

In Figs. 3.7 and 3.8 we compared the information costs of transmitting the group
sizes 𝑛(𝑔) and the contingency table 𝑛(𝑔𝑐) within the Dirichlet-multinomial encoding
scheme and the standard (flat) encoding, but we neglected the cost of sending the value
of 𝛼, which arguably means the comparison is not entirely fair. Assigning a cost to the
transmission of 𝛼 is somewhat delicate, since it is a continuous-valued parameter with a
potentially infinite number of decimal digits, and hence its complete transmission would
require an infinite amount of information. In practice, however, high accuracy is not
needed to get most of the benefit of the Dirichlet-multinomial approach and we can use a
small number of bits to transmit a value chosen from a finite set of possibilities without
losing much. For example, by using four bits of information we can transmit a value cho-
sen from the 16 possibilities 𝛼 ∈ {10−2, 10−1.75, 10−1.5, . . . , 101.5, 101.75}. In Figure C.1 we
show the resulting difference in information cost between the Dirichlet-multinomial and
flat encodings when this additional small cost is taken into account. As panel (a) shows,
the cost of transmitting 𝛼𝑔 does have a noticeable effect on the (already small) information
to transmit 𝑛(𝑔), the flat encoding now being favored in some cases, but this is usually not
an issue, since the information cost of 𝑛(𝑔) is not a large part of the total in most practical
situations. As panel (b) shows, we retain the significant gains in the cost of transmitting
the contingency table under the Dirichlet-multinomial scheme, even allowing for the cost
of transmitting 𝛼𝑔|𝑐 , especially in the common regime where 𝑐 ≃ 𝑔.

Moreover, these concerns will not impact our final mutual information score at all if the
same method is used to transmit both 𝛼𝑔 and 𝛼𝑔|𝑐 . Any costs that we include will cancel
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in the expression for the mutual information because

𝐼DM(𝑐;𝑔) = 𝐼0(𝑐;𝑔) + 𝐻(𝑛(𝑔)|𝑛, 𝑞𝑔 , 𝛼𝑔) + 𝐻(𝛼𝑔)
− [

𝐻(𝑛(𝑔𝑐)|𝑛(𝑐), 𝑞𝑔 , 𝛼𝑔|𝑐) + 𝐻(𝛼𝑔|𝑐)
]

= 𝐼0(𝑐;𝑔) + 𝐻(𝑛(𝑔)|𝑛, 𝑞𝑔 , 𝛼𝑔) − 𝐻(𝑛(𝑔𝑐)|𝑛(𝑐), 𝑞𝑔 , 𝛼𝑔|𝑐). (C.23)

In practice, therefore, the cost of transmitting 𝛼 plays no role in our calculation of the
mutual information.

C.16 Benchmarking

In this appendix we give some additional details of our community detection tests.

C.16.1 Numbers of groups

As discussed in Section 3.2.4, the traditional (non-reduced) mutual information favors
the 𝛾 = 10 generalized modularity maximization algorithm over other algorithms across
many of the tests reported in Fig. 3.11. However, a closer inspection of the partitions found
by this algorithm reveals that it drastically overestimates the number of communities. The
number of groups inferred by each algorithm for each value of the mixing parameter 𝜇

is shown for 𝑛 = 3200 in Fig. C.2. The traditional mutual information has a bias towards
labelings with an excessive number of groups, which causes it to prefer the 𝛾 = 10
algorithm in this regime, while the reduced and adjusted mutual information measures
prefer simple modularity maximization (𝛾 = 1).

C.16.2 Community detection algorithms

We assess the performance of six common community detection algorithms on synthetic
network examples. We use the algorithm implementations from the igraph library [35],
except for the inference method, for which we use the graph-tool library [105]. The six
algorithms are as follows.

1. InfoMap: InfoMap is an information theoretic approach that defines a compression
algorithm for encoding a random walk on a network, based on which communities
the walk passes through [118]. Different community labelings give rise to more
or less efficient compression, as quantified by the so-called map equation, and the
labeling with the highest efficiency is considered the best community division.
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Figure C.2: The number of groups inferred by each of the six algorithms in Fig. 3.11 for
LFR benchmark networks with 𝑛 = 3200 nodes and a range of values of the mixing
parameter 𝜇. The true planted number of groups is shown in black. The InfoMap
algorithm (red) generates an accurate number of groups for values of 𝜇 up to about 0.5,
but beyond this point it erroneously places all nodes in a single group. Standard
modularity maximization with resolution parameter 𝛾 = 1 (green) underestimates the
number of groups, presumably because of the resolution limit on the detection of small
groups, but not as severely as the number is overestimated when 𝛾 = 10 (blue).

2. Modularity maximization: Modularity is a quality function for network community
divisions equal to the fraction of edges within communities minus the expected such
fraction if edge positions are randomized while preserving node degrees. The label-
ing with the highest modularity is considered the best community division. Exact
modularity maximization is NP-hard and usually intractable, but modularity can be
maximized approximately using various heuristics, of which the most popular are
agglomerative methods such as the Louvain and Leiden algorithms [18, 127], spectral
methods [98], and simulated annealing [61, 89, 115]. In our tests we use simulated
annealing where computationally feasible and the Leiden algorithm otherwise, these
approaches giving the most consistent maximization of the modularity.

3. Modularity with a resolution parameter: Standard modularity maximization is
known to suffer from a "resolution limit"—it cannot detect communities smaller
than a certain threshold size [53], as discussed in Section 2.2.2. This can be remedied
using a variant of modularity that includes a resolution parameter 𝛾 such that higher
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values of 𝛾 cause the algorithm to prefer smaller communities [115]. Standard
modularity maximization corresponds to 𝛾 = 1, but for comparison we also conduct
tests with 𝛾 = 10 using the Leiden algorithm.

4. Statistical inference: Another popular approach to community detection makes use
of model fitting and statistical inference. In this context the most commonly fitted
model is the degree-corrected stochastic block model [69], which can be fitted using
Bayesian methods to find the best community division [107].

5. Walktrap: Walktrap is an agglomerative algorithm in which initially separate
nodes are iteratively combined into progressively larger communities in order from
strongest to weakest connections, where strength is quantified in terms of the time
for a random walk to reach one node from another [112].

6. Labelprop: The label propagation or "labelprop" algorithm initially places every
node in its own community then iteratively updates the labels of randomly cho-
sen nodes by majority vote among their network neighbors, breaking ties at ran-
dom [113].

As discussed in Section 3.2.5, all of these algorithms perform reasonably well, but the best
performers in our tests are InfoMap and the two variants of modularity maximization.

C.16.3 Results for the usual symmetric normalized mutual information

Figure C.3 shows the performance of the same six community detection methods as
in Fig. 3.12, but measured using the standard, symmetrically normalized, non-reduced
mutual information, which we denote by 𝐼(𝑆)0 (𝑐;𝑔). By this measure, many of the methods
appear to perform implausibly well, far beyond the detectability threshold visible in
Fig. 3.12, in the regime where all methods should by rights fail. Note in particular the
high scores achieved by the generalized modularity with 𝛾 = 10 by virtue of the excessive
number of groups it generates.

C.16.4 LFR network generation

The LFR networks we use for benchmarking are generated using the procedure described
in [77], which we summarize here.

1. Draw a degree sequence from a power-law distribution with exponent 𝜏1. Many
networks have power-law degree distributions, typically with exponents between
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Figure C.3: Performance of each of the six community detection algorithms considered
here, as quantified by the conventional symmetrically normalized non-reduced mutual
information 𝐼(𝑆)0 (𝑐;𝑔).

2 and 3 [21], and the LFR model exclusively uses power-law distributions. We
use 𝜏1 = 2.5, with average degree ⟨𝑘⟩ = 20 and maximum degree (which depends
on graph size) 𝑘max = 𝑛/10. Empirically, however, our results do not seem to be very
sensitive to these choices.

2. Draw a set of community sizes from a power-law distribution with exponent 𝜏2.
Many networks are also found to have community sizes that approximately follow
a power law, with typical exponents in the range from 1 to 2 [60, 32, 103, 77]. We
use 𝜏2 = 1.5 with a minimum community size of 𝑠min = 20 in all cases, while the
maximum community size is set to 𝑠max = max (𝑛/10, 100). Again, results were not
particularly sensitive to these choices, provided they produce a valid distribution at
all.

3. Assign each node to a community randomly, one node at a time, ensuring that the
community chosen is large enough to support the added node’s intra-community
degree, given by (1 − 𝜇)𝑘 where 𝑘 is the total degree.

4. Rewire the edges attached to each node while preserving the node degrees, until the
fraction of edges running between nodes in different communities is approximately
𝜇.
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The parameter values above are similar to those used for instance in [140]. As in that study,
we find that algorithm performance is dictated primarily by the parameters 𝑛 and 𝜇, so it
is these parameters that are varied our summary figures.

The LFR model is similar to a special case of the degree-corrected stochastic block model
(DC-SBM) [69], and hence one might expect that inference-based community detection
methods employing the latter model would perform well, perhaps even optimally, on
LFR networks. Specifically, in the limit of an infinite number of sampled networks and
perfect optimization of each community detection method, the final performance measure
for any algorithm is given by the expectation value of the similarity 𝑀(𝑔, ℎ[A]) between
the ground truth LFR partition 𝑔 and the partition ℎ[A] of the LFR network A inferred
using the algorithm, where the expectation is taken over the ensemble 𝑃(A,𝑔|𝜃) of LFR
networks and partitions A,𝑔 generated using parameters 𝜃 (meaning 𝜇, 𝜏1, 𝜏2, etc.). By
using the LFR benchmark with parameters 𝜃 to compare the performance of community
detection algorithms, we are therefore implicitly defining the "best" algorithm to be the one
whose corresponding function ℎ[A] optimizes

∑
A,𝑔 𝑃(A,𝑔|𝜃)𝑀(𝑔, ℎ[A]). If the similarity

measure we choose is the "all or nothing" error function 𝑀(𝑔, 𝑐) = 𝛿(𝑔, 𝑐), then the optimal
community detection algorithm is trivially the one with

ℎ[A] = argmax
𝑔

𝑃(A,𝑔|𝜃) = argmax
𝑔

𝑃(𝑔|A, 𝜃). (C.24)

In other words, the optimal algorithm simply performs maximum a posteriori estimation
under the model from which the network was generated. There is no explicit formula for
the posterior probability under the LFR model, but to the extent that it is a special case
of the DC-SBM, we might expect the DC-SBM (with appropriate priors) to give optimal
results [109].

The LFR model, however, is not precisely a special case of the DC-SBM. In particular, the
DC-SBM normally assumes a uniform distribution over community sizes, where the LFR
model assumes a power law. Moreover, we are not using the crude all-or-nothing error
function: our entire purpose in this paper is to develop mutual information measures that
aggregate and weigh different modes of error in a sensible fashion. These differences, it
appears, are enough to ensure that the DC-SBM does not perform the best in our testing.

Regardless, we emphasize that our use of the LFR benchmark in our analysis is simply
for consistency with previous studies of network community detection methods [77, 75,
140]. The justification for our proposed similarity measure, on the other hand, is chiefly
its theoretical merit over the conventional (symmetric, non-reduced) normalized mutual
information, and is independent of the use of the LFR (or any other) benchmark.
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C.17 Bias towards large numbers of groups in the tradi-
tional mutual information

To shed light on why the traditional mutual information Eq. 3.39 is biased towards an
excessive number of groups, and how the reduced mutual information of Eq. 3.41 corrects
this, consider the (extreme) example in which every object is placed in a group on its own,
producing a candidate labeling 𝑐 = (1, . . . , 𝑛). Whatever the ground truth labeling 𝑔 is,
this candidate labeling clearly provides no information about it whatsoever, so we expect
the mutual information to be zero. But this is not what we find. The contingency table in
this case is

𝑛(𝑔𝑐)𝑟𝑠 =

{
1 if 𝑔𝑟 = 𝑠,
0 otherwise,

(C.25)

so the conventional mutual information of Eq. (3.39) is

𝐼0(𝑐;𝑔) = log 𝑛!∏
𝑠 𝑛

(𝑔)
𝑠 !

= 𝐻0(𝑔). (C.26)

This answer is not merely wrong; it is maximally so. The mutual information should
take its minimum value of zero, but instead it takes the value𝐻0(𝑔), which is the maximum
possible since 𝐻0(𝑔) is an upper bound as we have said. The reason for this result is that
in this case the contingency table itself uniquely defines 𝑔, so neglecting it puts the mutual
information in error by an amount equal to the complete information cost of the ground
truth. If we include the subleading terms on the other hand, this erroneous behavior
disappears. Assuming for simplicity that the ground-truth groups are of equal size, the
optimal concentration parameters are 𝛼𝑔|𝑐 = 0 and 𝛼𝑔 = ∞, and the reduced mutual
information of Eq. (3.41) becomes

𝐼(𝑐;𝑔) = 𝐼0(𝑐;𝑔) − log
[

𝑛!∏
𝑟 𝑛𝑟 !

(1/𝑞𝑔)𝑛
]
− 𝑛 log 𝑞𝑔

= 0. (C.27)

which is the correct answer.
Outside this special case, we observe from Eq. (3.41) that in the limit where the numbers

of groups 𝑞𝑔 = 𝑞𝑐 = 𝑞 are held fixed and 𝑛 → ∞, the traditional mutual information grows
as

𝐼0(𝑐;𝑔) ∼ O(𝑛 log 𝑞) (C.28)
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while the correction term grows as

𝐼(𝑐;𝑔) − 𝐼0(𝑐;𝑔) ∼ O(𝑞2 log 𝑛). (C.29)

Thus, in this limit the subleading term is relevant when 𝑛
log 𝑛 ≲ 𝑞2

log 𝑞 , a condition that holds
in many practical contexts, where the number of communities can grow as

√
𝑛 or faster.

C.18 Adjusted mutual information

In this appendix we discuss the adjusted mutual information (AMI), an alternative version
of the mutual information that addresses the typical measure’s bias towards labelings
with too many groups. We further discuss how this measure is related to the reduced
mutual information we consider in Section 3.1 and how to interpret the AMI within the
information theoretic framework.

For finite number of objects 𝑛, even a random labeling 𝑐 will have positive mutual
information with respect to any ground truth 𝑔 in expectation: because the traditional
mutual information is non-negative, fluctuations due to randomness will produce non-
negative values only and hence their average will in general be positive [131, 145]. This
seems counterintuitive; we would expect the average value for a random labeling to be
zero.

We can solve this problem by subtracting off the expected value, thereby making the
average zero by definition. To do this we must first specify how the expectation is defined—
over what distribution of candidate labelings are we averaging? The conventional choice
is to take the uniform distribution over labelings that share the same group sizes 𝑛(𝑐) as
the actual candidate 𝑐. This yields the adjusted mutual information of Vinh et al. [131]:

𝐼𝐴(𝑐;𝑔) = 𝐼0(𝑐;𝑔) −
〈
𝐼0(𝑐;𝑔)

〉
{𝑐|𝑛(𝑐)} , (C.30)

where the expectation ⟨. . .⟩ is over the relevant ensemble.
The adjusted mutual information can also be derived in a fully information-theoretic

manner, as described in [101]. There it is shown that the subtracted term ⟨𝐼0(𝑐;𝑔)⟩{𝑐|𝑛(𝑐)}
is precisely equal to the average cost of transmitting the contingency table when label-
ings are drawn from the uniform distribution. However, this distribution heavily favors
contingency tables with relatively uniform entries, simply because there are many more
labelings that correspond to uniform tables than to non-uniform ones. Real contingency
tables, on the other hand, are often highly non-uniform, since applications of the mutual
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information focus on labelings that are somewhat similar to the ground truth (producing
a non-uniform table). In such cases, the average used in the adjusted mutual information
puts most of its weight on configurations that are very different from those that occur in
reality, making it a poor representation of true information costs. The reduced mutual
information considered in this thesis, by contrast, deliberately allows for non-uniform
tables by drawing them from a Dirichlet-multinomial distribution and we argue that this
is a strong reason to favor it over the adjusted mutual information. Nonetheless, in Sec-
tion 3.2.3 we give results using both reduced and adjusted mutual information, and find
fairly similar outcomes in the two cases.
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Appendix D

Supplementary Material for Chapter 4

D.19 Data sets

The example data sets used in this chapter are summarized in Table 4.1 and divide into
three broad categories: sports and games (six data sets), human social hierarchies (three
data sets), and animal social hierarchies (six data sets). Here we provide some additional
details on these data.

Sports and games: We consider both team competition (basketball, soccer) and indi-
vidual competition (chess, Scrabble, tennis, video games). For the team sports we treat
each team in each year as a different entity with its own assigned score 𝑠𝑖 . Thus, for ex-
ample, the England soccer team in 2015 is considered a different entity from the England
soccer team in 2014. This reflects the fact that the composition of teams can change from
season to season and with it the ranking of the team in comparison to others.

Two of the game data sets, for chess and Scrabble, were too large in their original
forms to perform our full Bayesian analysis in a reasonable amount of time, so they were
subsampled to reduce them to manageable size. We limited the chess data set to only
those players who had participated in at least 200 games and then randomly selected
5% of those players. All others were removed from the data set. The Scrabble data set
was similarly pared down by limiting it to players who had at least 100 games and then
choosing a random 20% of those who remained.

Another issue with some of the game data is the presence of ties, which occur with
moderate frequency in both chess and soccer. Although there do exist ranking models
that allow for ties [114, 39], we avoid these in the present work for the sake of simplicity,
and all our models assume that the only possible outcomes of a match are a win or a loss.
To accommodate the chess and soccer data within this setting we remove all ties from the
data, which amounts to 10–30% of matches in those data sets.

Human social hierarchies: A related issue arises in the "friends" data set, which
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details friend nominations among students in a US middle/high school. A substantial
fraction of the nominations are reciprocal—two individuals each nominate the other as a
friend [62, 12]. Such reciprocated nominations have been treated as ties in some previous
analyses [100], but here again we simply remove them. Only unreciprocated friendships
are recorded as a win for the person who receives the nomination.

For the faculty hiring data sets, the original source [31] included three data sets, for
business schools, computer science departments, and history departments. We include
only the first two of these in our analysis, purely to avoid cluttering the presentation,
since the results for history departments very similar to the other two: we find (𝛽̂, 𝛼̂) =
(4.38, 0.01) for history, compared to (4.36, 0.01) for business and (4.25, 0.01) for computer
science.

Animal hierarchies: Data on animal dominance hierarchies are copious: this has been
an active field of research for at least sixty years. The data sets studied in this chapter
come from a variety of sources, but particularly from DomArchive, a collection of 436
dominance interaction data sets compiled by Strauss et al. [125]. Data sets in the archive
vary widely in size, but the sets we focus on are ones with a relatively large number of
interactions per individual, which improves the statistics and helps reduce uncertainty on
the fitted values of the model parameters.

D.20 Other measures of model performance

In the cross-validation results reported in Section 4.5 we quantify predictive performance
of the various models by calculating the log-likelihood of the testing (held-out) data
within the fitted model—see Fig. 4.4. This is not, however, the only way to measure
performance. There are a number of other approaches in common use. In this appendix
we describe some alternative performance metrics and investigate how our models size
up when measured by these metrics. In general the results are similar to those presented
in Section 4.5, but there are some differences in the details.

A simple way to quantify the predictive performance of a model is to count the number
of times the model predicts the correct winner in the test data. As before, we start by
fitting the model to the training portion of the data to obtain MAP estimates ŝ of the
scores. Then, given those estimates, player 𝑖 is considered favored to beat player 𝑗 if
𝑠𝑖 > 𝑠 𝑗 . The accuracy 𝐶 of the model is defined to be the fraction of matches in the testing
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data where this prediction is born out:

𝐶 =

∑
𝑖 𝑗𝑊𝑖 𝑗1𝑠𝑖>𝑠 𝑗∑

𝑖 𝑗𝑊𝑖 𝑗
, (D.1)

where 𝑊𝑖 𝑗 is the number of times 𝑖 beats 𝑗 in the testing data, as previously, and 1𝑥 is the
indicator function which is 1 if 𝑥 is true and 0 otherwise.

Values of this accuracy measure are shown in Fig. D.1a for each of the models considered
in this chapter for each of our data sets. As with our previous results for log-likelihood,
we report performance relative to a baseline set by the standard Bradley-Terry model with
a logistic prior, represented by the horizontal dashed line in the figure. Comparing with
our earlier results from Fig. 4.4, the difference between models is smaller when measured
in terms of accuracy than log-likelihood. For example, the minimum violations ranking
performs quite poorly according to log-likelihood, but is comparable and sometimes
better than our models in terms of accuracy. This may be because the minimum violations
ranking is more directly tuned to solving this specific problem: by minimizing violations
we precisely minimize the number of outcomes that are predicted incorrectly. On the
other hand, the minimum violations algorithm does not reflect how confident we are in
each outcome or any other aspect of the prediction task, and in this sense is inferior to
other approaches.

Both the likelihood and accuracy measures are based on point estimates of model
parameters ŝ, 𝛼̂, and 𝛽̂ but, as shown in Fig. 4.2, point estimates do not always do a good
job of capturing the full posterior distribution 𝑃(s, 𝛼, 𝛽|Atrain), particularly in sparse data
sets. To get around this issue we can calculate the average of the likelihood over the
distribution of parameter values thus:

𝑃(Atest|Atrain) =
∫

𝑃(Atest|s, 𝛼, 𝛽)𝑃(s, 𝛼, 𝛽|Atrain) 𝑑𝑛s 𝑑𝛼 𝑑𝛽. (D.2)

In practice, this quantity can be estimated from a set of 𝑁 samples of (s𝑘 , 𝛼𝑘 , 𝛽𝑘) (with
𝑘 = 1 . . . 𝑁) drawn from the posterior 𝑃(s, 𝛼, 𝛽|Atrain), by computing the average

𝑃(Atest|Atrain) ≃ 1
𝑁

𝑁∑
𝑘=1

𝑃(Atest|s𝑘 , 𝛼𝑘 , 𝛽𝑘). (D.3)

We can calculate this estimate from the same Monte Carlo samples we already generated,
which we used previously to visualize the posterior distribution in Fig. 4.2. As our
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Figure D.1: Results from the same set of cross-validation tests shown in Fig. 4.4, but
quantified using (a) accuracy and (b) log posterior-predictive probability, instead of
log-likelihood. All results are measured relative to the Bradley-Terry model with a
logistic prior, which is represented as the dashed horizontal line in each panel. Error
bars represent upper and lower quartiles, estimated from at least 50 random repetitions
of the cross-validation procedure in each case. The maximum likelihood and
SpringRank models are not included in the lower comparison, since they are based on
point estimates rather than Bayesian methods and hence one cannot calculate a
posterior-predictive probability. Arrows indicate results that are off the scale.
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measure of performance we then compute the log posterior-predictive probability per game

𝑅 =
log𝑃(Atest|Atrain)∑

𝑖 𝑗𝑊𝑖 𝑗
, (D.4)

a fully Bayesian performance measure.
We plot this measure for a number of our models and data sets in Fig. D.1B. Note,

however, that since the measure involves an integral over the posterior distribution of the
scores, we cannot apply it to ranking methods that return point estimates of the scores
only, rather than a full probability distribution, which in this case means the Bradley-Terry
MLE and SpringRank, which are thus excluded from the figure. Among the remaining
methods the full luck-plus-depth model of this chapter performs best, or equal-best, for
every data set, by this measure.

D.21 Point estimates of parameters

To compute the log-likelihood and accuracy measures of predictive success we use point
estimates of the model parameters and scores, which we compute one after the other: we
estimate the expected posterior values of the parameters 𝛼̂, 𝛽̂ from a simple average of
the Monte Carlo samples, then we fix these values and compute the MAP values of the
scores ŝ using a standard numerical optimization method. We could, alternatively, use
the expected values of the scores, which would be easy to calculate from the samples, but
we prefer MAP values since they give a more appropriate point of comparison with other
approaches based on maximum probability estimates, such as the maximum likelihood
fit to the Bradley-Terry model or the SpringRank algorithm.

One might imagine one could simplify the calculation by just jointly optimizing the
posterior 𝑃(s, 𝛼, 𝛽|A) over both the scores and parameters to define estimates

(s∗, 𝛼∗, 𝛽∗) ≡ argmaxs,𝛼,𝛽𝑃(s, 𝛼, 𝛽|A). (D.5)

We find, however, that this can give biased results by artificially inflating the value of the
depth parameter 𝛽. This happens because the likelihood 𝑃(A|s, 𝛼, 𝛽) is a function of the
product 𝛽s (see Eq. (4.13)), meaning that the value of the likelihood is unchanged if we
increase 𝛽 while simultaneously reducing all the scores by the same factor. Reducing s in
this way increases the prior 𝑃(s) (which is peaked at s = 0) and so increases the posterior
𝑃(s, 𝛼, 𝛽|A). Unchecked, this effect would send the joint maximum to 𝛽∗ → ∞, s → 0.
The prior 𝑃(𝛽) somewhat mitigates this problem, but in practice the jointly fitted value 𝛽∗
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is still unreasonably large: values for each of the data sets are shown in Table D.1.

D.22 Other measures of depth

In this chapter we measure depth of competition by the parameter 𝛽 in our joint luck-plus-
depth model, Eq. (4.13). This is not the only possible approach for quantifying depth,
however, and in this appendix we discuss some alternative approaches and explain how
they relate to similar ideas presented elsewhere.

As discussed in the section on depth of competition, our depth measure 𝛽 counts the
number of "levels of skill" between two typical players in a population, who in expectation
have a priori score difference 𝑠𝑖−𝑠 𝑗 = 1 (because of our choice of prior on 𝑠). An alternative,
and common, way to define depth is as the number of levels between not the typical pair
of players but the best and worst players, which is given by

𝛽̂range = 𝛽̂(𝑠max − 𝑠min). (D.6)

In the data sets studied here we find that the factor 𝑠max − 𝑠min varies from about 2.5
to 4. The range tends to be larger when there are more competitors, presumably because
outliers are more likely in large samples, and we regard this as downside of this measure,
although in practice the depth order of our data sets does not change greatly between this
measure and our own. Values of 𝛽̂range are reported in Table D.1 for each of the data sets.

Our depth measure 𝛽 is defined in the context of our full luck-plus-depth model, but in
many cases, particularly for the sports data sets, there is no strong evidence of a nonzero
luck parameter 𝛼. An alternative approach for quantifying depth in these cases is to use a
depth-only model as in Eq. (4.9). Depth values calculated by fitting this model are given in
Table D.1 and denoted 𝛽0, which we refer to as "restricted depth." In practice these figures
are not very different for those for 𝛽 in cases (such as sports) where the value of 𝛼 is small
anyway, or more precisely when the posterior distribution in Figure 4.2 meaningfully
intersects the 𝛼 = 0 axis, so that the zero-luck model is plausible. On the other hand,
𝛽 and 𝛽0 can differ substantially when the data support a significantly nonzero value of 𝛼.
For example, the mice data set has an expected value of 𝛼 around 0.25 with a posterior
distribution that has considerable separation from 𝛼 = 0, and in this case we find a large
difference between a value of 𝛽̂ = 26.5 and 𝛽̂0 = 2.1, the latter being more akin to the
sports data than to the other animal hierarchies.

The restricted depth 𝛽0 is closer in spirit to previous measures of depth that do not
consider the element of luck, and the occurrence of large discrepancies with the value of 𝛽
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in some data sets suggests that such previous measures might potentially be in error by a
substantial margin. For applications where the element of luck is not an issue, however,
the restricted depth could be useful as a simplification of our measure. It can be calculated
relatively straightforwardly, to a good approximation, using the standard Bradley-Terry
model with a logistic prior, a model we have recommended in the past. In our current
analysis we have used Gaussian priors, but the logistic prior has some practical advantages
in that it enables simple and fast iterative methods for computing MAP scores. In the most
common version of this approach, one uses the unit logistic distribution 1/[(1+𝑒 𝑠)(1+𝑒−𝑠)]
as prior with the standard (𝛽 = 1) Bradley-Terry model, which leads to an elegant iterative
algorithm for calculating the scores [100]. The logistic prior, however, has variance 1

3𝜋
2,

whereas our Gaussian prior has variance 1
2 , so, though the qualitative shape of the two

distributions is similar, the logistic distribution has substantially greater width, by a factor
of 𝜋

√
2/3. An alternative way to perform the same calculation is to shrink the width

of the prior to be the same as the Gaussian, while simultaneously shrinking the width
of the Bradley-Terry score function by the same factor, which is equivalent to choosing
𝛽 = 𝜋

√
2/3 = 2.565. This leaves the algorithm, and the resulting ranking, unchanged, and

thus the iterative method with a logistic prior is equivalent to the depth-only model with
𝛽 = 2.565.

Happily, this choice of 𝛽 falls squarely in the middle of the range of values seen in
Fig. 4.2 and in practice this approach has quite competitive performance, as shown in
Fig. 4.4, where it is used as the baseline. On the other hand, there are plenty of cases
where the value 𝛽 = 2.565 is clearly misspecified, which is signaled by fitted scores
whose variance does not match the width of the prior. This observation suggests that
we could use the spread of the fitted scores as a heuristic measure of (restricted) depth
and in practice this approach seems to work quite well. Quantifying the spread by its the
standard deviation, we report figures for each of our data sets in Table D.1, and we find
that there is good correlation between this standard deviation and the restricted depth 𝛽̂0

as calculated earlier. Given that the former is substantially easier to calculate than the
latter, this could be a useful approach for calculations where accuracy and rigor are not at
a premium.

We also note that MAP estimation in our depth-only model is equivalent to fitting the
usual Bradley-Terry model with an L2 regularization, equivalent to a Gaussian prior. This
correspondence suggests that one could infer a point estimate of the depth by tuning the
strength of the L2 regularization by maximizing performance on some held-out valida-
tion data set. Like the joint MAP estimation of the depth and the scores discussed in
Appendix D.21, however, this method displays a bias towards large depth values. Specifi-
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cally, since validation performance is only assessed at the MAP point estimate of the scores,
if that point scales as s ∼ 𝛽−1 for large 𝛽 the validation log-likelihood is largely unaffected,
being proportional to 𝛽𝑠. The Bayesian approach, by contrast, penalizes high values of 𝛽
by effectively assessing performance integrated over the whole posterior distribution of
scores, since large 𝛽 values are sensitive to slight changes in these scores beyond the point
estimate.

A quite different approach to measuring depth has been developed in the animal
behavior literature, where the notion of "steepness" has gained currency in discussions of
dominance hierarchies [41]. Steepness is most often defined through quantities known as
"David’s scores," which are measures of individual performance analogous to our fitted
𝑠𝑖 [37]. The David’s scores are defined as

DS𝑖 = w𝑖 +
∑
𝑗

w𝑗𝑃𝑖 𝑗 − 𝑙𝑖 −
∑
𝑗

𝑙 𝑗𝑃𝑗𝑖 (D.7)

where 𝑃𝑖 𝑗 is the fraction of times that 𝑖 beats 𝑗:

𝑃𝑖 𝑗 =
𝐴𝑖 𝑗

𝐴𝑖 𝑗 + 𝐴 𝑗𝑖
, (D.8)

and w𝑖 and 𝑙𝑖 are row and column sums of this matrix:

w𝑖 =
∑
𝑗

𝑃𝑖 𝑗 , 𝑙𝑖 =
∑
𝑗

𝑃𝑗𝑖 . (D.9)

De Vries et al. [41] propose normalizing the David’s scores according to

NormDS𝑖 =
DS𝑖 +

(𝑛
2
)

𝑛
, (D.10)

which vary between 0 and 𝑛 − 1, then the animals are ranked according to the resulting
values. With the inferred rank order on the 𝑥-axis and the normalized David’s score on
the 𝑦-axis, the steepness of the hierarchy is then defined to be the slope 𝑆DS of the ordinary
line of best fit. A nice feature of this formulation is that the steepness runs from 0 to 1,
with the value 1 being achieved in any hierarchy where all dominance interactions run
from higher ranked to lower ranked individuals (zero violations).

Neumann and Fischer [96] have recently proposed a related measure that considers the
slope 𝑆Elo of the line of best fit between Elo scores for the competitors and their inferred
ordinal ranking. Elo scores are essentially a sequential (time-dependent) version of a
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maximum likelihood fit to the Bradley-Terry model and so this definition is closer to the
ideas considered in this chapter. Neumann and Fischer also incorporate Bayesian elements
where certain aspects of the fitting process are randomized, such as the sequential order
(if the true order is unknown) and the initial values of the ratings.

In Table D.1 we report values for a number of our data sets of 𝑆DS (calculated using the
R package steepness [80]) and 𝑆Elo (calculated using the R package EloSteepness [95]).
Overall, we find that the results are clearly correlated with the other measures shown
in the table, although 𝑆DS has trouble differentiating between the lower depth data sets.
The Elo-based steepness 𝑆Elo fares better and correlates quite well with the restricted
depth 𝛽̂0, although the calculations are computationally demanding on account of the
randomization and prove intractable for our larger data sets (as indicated by "–" in the
table).

To complete our collection of measures of depth we also include in Table D.1 the pa-
rameter 𝛽𝑆 that appears in the SpringRank model [40]. This parameter has not previously
been used as a measure of depth but one can make an argument for its use in this way—see
Appendix D.24.

Finally, we note in passing that there is an analogy between the depth parameter 𝛽 and
a notion of "temperature" for a data set. The form of the score function of Eq. (4.9) is pre-
cisely that of the Fermi-Dirac probability function of many-body physics, the probability
of occupation at inverse temperature 𝛽 of an energy level with energy 𝑠 above the Fermi
level. While we have not directly exploited this analogy here, it is a part of a broader cor-
respondence between noise and unpredictability in statistics and temperature in physics
in the same manner as the SBM-Ising model analogy described in Appendix A.5.

D.23 Depth as predictability

In Section 4.4 we observed that among our data sets the sports and games have lower depth
compared to the social hierarchies, and we speculated that this was because a high-depth
sport would not be as interesting to watch: at high depth a typical pair of competitors
will be very unevenly matched and there will be little suspense about who is going to
win. In other words, high depth should result in high predictability of outcomes. In this
appendix we test this hypothesis by calculating various measures of predictability.

A natural measure of predictability is the same log-likelihood that we studied in our
section on predicting wins and losses. The log-likelihood of a data set is equal to minus the
description length of the outcomes of the matches in that set, given the fitted model. That
is, it is equal to the amount of information it would take to communicate the outcomes
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Measures of depth Luck
Data set 𝛽̂ 𝛽∗ 𝛽̂range 𝛽̂0 std(ŝ𝐿) 𝑆DS 𝑆Elo 𝛽̂𝑆 𝛼̂ 𝛼∗

Sp
or

ts
/g

am
es

Scrabble 0.68 3.13 2.43 0.60 0.64 0.00 – 2.24 0.09 0.00
Basketball 1.01 10.79 3.66 0.83 0.61 0.01 0.48 2.32 0.13 0.02
Chess 1.17 4.73 4.21 1.04 0.91 0.00 – 2.85 0.07 0.12
Tennis 1.44 1.98 5.88 1.34 0.72 0.00 – 2.67 0.04 0.00
Soccer 1.73 6.23 4.97 1.58 1.02 0.00 – 4.00 0.04 0.00
Video games 1.77 17.53 5.12 1.55 1.10 0.02 0.62 2.95 0.07 0.05

H
um

an Friends 3.54 10.36 9.88 2.80 1.16 0.00 – 5.23 0.05 0.00
CS departments 4.25 15.42 12.11 3.88 1.88 0.01 0.78 4.46 0.01 0.00
Business depts. 4.36 13.72 11.73 4.07 2.25 0.14 0.84 4.07 0.01 0.01

A
ni

m
al

Vervet monkeys 6.01 30.39 17.07 3.57 2.23 0.40 0.85 4.34 0.07 0.07
Dogs 8.74 33.29 24.82 3.76 2.03 0.25 0.93 3.65 0.11 0.09
Baboons 13.19 18.61 39.04 9.37 4.38 0.05 0.95 5.63 0.02 0.02
Sparrows 22.92 63.89 69.68 8.68 3.62 0.50 0.91 7.72 0.02 0.01
Mice 26.48 59.48 72.29 2.10 1.35 0.31 0.72 3.22 0.25 0.24
Hyenas 100.58 168.48 246.42 9.83 4.00 0.30 0.95 8.15 0.02 0.02

Table D.1: Inferred parameter values for the data sets considered in Section 4.4. From left
to right: 𝛽̂ is expected depth, 𝛽∗ is the jointly optimized MAP depth as in Eq. (D.5), 𝛽̂range
is depth between the best and worst player as in Eq. (D.6), 𝛽̂0 is restricted depth as
inferred in the depth-only (𝛼 = 0) model, std(ŝ𝐿) is the standard deviation of the MAP
scores within the logistic-prior model, 𝑆DS is the steepness measure of de Vries et al. [41],
𝑆Elo is the steepness measure of Neumann and Fischer [96], 𝛽̂𝑆 is the maximum
likelihood estimate of the parameter 𝛽𝑆 in the SpringRank model [40], 𝛼̂ is the expected
luck, and 𝛼∗ is the jointly optimized MAP estimate of the luck.
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to a receiver who already knows the fitted model. Higher information (more negative
log-likelihood) implies more unpredictable outcomes. Completely random outcomes
(matches decided by the toss of a coin) would give a log-likelihood of −1 per match (in
log-base-2 units), while completely predictable ones would give zero.

Previously, we plotted the log-likelihood relative to the baseline set by the standard
Bradley-Terry model, but in the present context we are interested in the absolute value.
Figure D.2A shows the absolute value for each of our data sets, arranged in order of
increasing depth 𝛽. As the figure shows, the low-depth sports on the left are indeed quite
unpredictable and none of our models perform much better than chance at predicting
outcomes (log-likelihood per match is close to −1). Some of the methods we compare
against, notably the maximum likelihood Bradley-Terry and minimum violation ranking,
fall well short even of random guesses, as indicated by the arrows at the bottom of the
figure. As depth increases, however, outcomes generally become more predictable, and
the deepest animal hierarchies have a log-likelihood approaching zero, meaning outcomes
are nearly perfectly predictable.

There are some exceptions to this trend, most notably the mice data set which, as seen
in Fig. 4.2, has a large element of luck (𝛼̂ ≃ 0.25). This introduces substantial randomness
into the matches, despite the high depth, and greatly decreases predictability.

We can shed further light on predictability by calculating the average amount of in-
formation needed to describe matches that are truly drawn from our model. That is, we
consider two players whose scores 𝑠𝑖 are drawn from our normal prior with variance 1

2 , so
that the difference of their scores is normally distributed with variance 1, and we assume
that the probability of 𝑖 beating 𝑗 is given exactly by 𝑝𝑖 𝑗 = 𝑓𝛼𝛽(𝑠𝑖 − 𝑠 𝑗), Eq. (4.13), for some
values of 𝛼 and 𝛽 that we specify. Then the average information needed to describe the
outcome of the match is given by the standard entropy function for a Bernoulli random
variable

𝐻[𝑝𝑖 𝑗] = −𝑝𝑖 𝑗 log 𝑝𝑖 𝑗 − (1 − 𝑝𝑖 𝑗) log(1 − 𝑝𝑖 𝑗). (D.11)

Then, writing 𝑠 = 𝑠𝑖 − 𝑠 𝑗 and integrating, the average entropy per match over matches
between many random pairs of players is

𝑆𝛼𝛽 =
1√
2𝜋

∫ ∞

−∞
𝐻

[
𝑓𝛼𝛽(𝑠)

]
𝑒−𝑠

2/2 𝑑𝑠. (D.12)

Unfortunately, this integral does not seem to have a closed-form solution, but it can
be evaluated numerically. Figure D.3 shows a modified version of Fig. 4.2 from the main
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Figure D.2: Absolute log-likelihood and accuracy values per match in the
cross-validation tests of Fig. 4.4. This figure differs from Fig. 4.4 in showing absolute
values rather than values relative to the Bradley-Terry model with logistic prior.
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Figure D.3: The data sets of Fig. 4.2 with dashed lines representing the contours of
average entropy per match. Low entropy indicates confidence about the outcome of a
match; high entropy indicates unpredictability.

chapter, representing the posterior probability distribution of 𝛼, 𝛽 for our various data sets,
with superimposed lines representing the contours of the average entropy. As the figure
shows, the entropy is higher for lower depth and for higher luck, as we would expect,
since both increase the unpredictability of outcomes. We also note that the posterior
distributions of individual data sets appear to follow the contour lines quite closely,
arcing upward and to the right. This occurs because the entropy is by definition equal
to minus the log-likelihood, and our prior on 𝛼 and 𝛽 is slowly varying by construction,
so the posterior is also slowly varying along the contour lines of constant likelihood.
The contour lines are calculated as averages over outcomes drawn from the fitted model,
whereas the probability clouds in the figure represent real-world data, so the two are not
precisely comparable. But to the extent that the data are well described by the model
we would expect them to agree and hence for the clouds to follow the contours in the
plot. This also means that, while some of the clouds in the figure are quite extended,
indicating substantial uncertainty about the values of 𝛼 and 𝛽, they are narrow in the
direction perpendicular to the contours, meaning that we have high confidence about the
value of the log-likelihood. This is reflected in Fig. D.2a, where we see that the uncertainty
on our estimates of the log-likelihood is quite modest.

D.24 SpringRank

Among the various approaches to ranking considered in this chapter, SpringRank [40] is
a recent and novel approach based on a physical analogy to the behavior of a network of
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masses and springs. In this appendix we make some observations on the method and how
it relates to the Bradley-Terry model, which forms the foundation for the other methods
we consider.

In SpringRank the likelihood of observing a directed network A is given by a product
of Poisson distributions over all possible directed edges:

𝑃(A|s, 𝛽𝑆 , 𝑐) =
∏
𝑖 𝑗

𝑟
𝐴𝑖 𝑗
𝑖 𝑗

𝐴𝑖 𝑗!
𝑒−𝑟𝑖 𝑗 , (D.13)

with the expect number of directed edges 𝑖 → 𝑗 given by

𝑟𝑖 𝑗 = 𝑐𝑒−
1
2𝛽𝑆(𝑠𝑖−𝑠 𝑗−1)2 , (D.14)

for given scores s, inverse temperature 𝛽𝑆, and a "sparsity" parameter 𝑐. Equation (D.13)
can be rewritten as

𝑃(A|s, 𝛽𝑆 , 𝑐) =
∏
𝑖< 𝑗

𝑟
𝐴𝑖 𝑗
𝑖 𝑗

𝐴𝑖 𝑗!
𝑒−𝑟𝑖 𝑗

𝑟
𝐴𝑗𝑖
𝑗𝑖

𝐴 𝑗𝑖!
𝑒−𝑟𝑗𝑖

=
∏
𝑖< 𝑗

(𝑟𝑖 𝑗 + 𝑟 𝑗𝑖)𝐴𝑖 𝑗+𝐴𝑗𝑖 𝑒−(𝑟𝑖 𝑗+𝑟𝑗𝑖)
(𝐴𝑖 𝑗 + 𝐴 𝑗𝑖)!

(𝐴𝑖 𝑗 + 𝐴 𝑗𝑖)!
𝐴𝑖 𝑗!𝐴 𝑗𝑖!

(
𝑟𝑖 𝑗

𝑟𝑖 𝑗 + 𝑟 𝑗𝑖

)𝐴𝑖 𝑗 ( 𝑟 𝑗𝑖
𝑟𝑖 𝑗 + 𝑟 𝑗𝑖

)𝐴𝑗𝑖

=
∏
𝑖< 𝑗

𝑚
𝐴̄𝑖 𝑗
𝑖 𝑗 𝑒

−𝑚𝑖 𝑗

𝐴̄𝑖 𝑗!

(
𝐴̄𝑖 𝑗
𝐴𝑖 𝑗

)
1

[1 + 𝑒−2𝛽𝑆(𝑠𝑖−𝑠 𝑗)]𝐴𝑖 𝑗 [1 + 𝑒−2𝛽𝑆(𝑠 𝑗−𝑠𝑖)]𝐴𝑗𝑖 , (D.15)

where 𝑚𝑖 𝑗 = 𝑟𝑖 𝑗 + 𝑟 𝑗𝑖 and 𝐴̄𝑖 𝑗 = 𝐴𝑖 𝑗 + 𝐴 𝑗𝑖 is an element of the adjacency matrix Ā of the
undirected network of matches.

Equation (D.15) is equal to the likelihood of generating an undirected network Ā of
matches and then separately choosing the directions of the edges, i.e., the winners of the
matches:

𝑃(A|s, 𝛽𝑆 , 𝑐) = 𝑃(Ā|s, 𝛽𝑆 , 𝑐)𝑃(A|s, 𝛽𝑆 , Ā), (D.16)

where the probability of the undirected network is another product of Poisson distribu-
tions:

𝑃(Ā|s, 𝛽𝑆 , 𝑐) =
∏
𝑖< 𝑗

𝑚
𝐴̄𝑖 𝑗
𝑖 𝑗 𝑒

−𝑚𝑖 𝑗

𝐴̄𝑖 𝑗!
(D.17)
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Figure D.4: The function𝑊(𝛽𝑆 , 𝑠) of Eq. (D.21) plotted against 𝑠, for various values of 𝛽𝑆
as indicated.

and

𝑃(A|s, 𝛽𝑆 , Ā) =
∏
𝑖< 𝑗

(
𝐴̄𝑖 𝑗
𝐴𝑖 𝑗

)
1

[1 + 𝑒−2𝛽𝑆(𝑠𝑖−𝑠 𝑗)]𝐴𝑖 𝑗 [1 + 𝑒−2𝛽𝑆(𝑠 𝑗−𝑠𝑖)]𝐴𝑗𝑖 . (D.18)

(It is straightforward to confirm that the latter is correctly normalized for 𝐴𝑖 𝑗 = 0 . . . 𝐴̄𝑖 𝑗
and 𝐴 𝑗𝑖 = 𝐴̄𝑖 𝑗 − 𝐴𝑖 𝑗 .)

But Eq. (D.18) is identical to the likelihood for the model studied in this chapter,
Eqs. (4.3) and (4.13),

𝑃(A|s, 𝛼, 𝛽, Ā) =
∏
𝑖< 𝑗

(
𝐴̄𝑖 𝑗
𝐴𝑖 𝑗

)
𝑓𝛼𝛽(𝑠𝑖 𝑗)𝐴𝑖 𝑗 𝑓𝛼𝛽(𝑠 𝑗𝑖)𝐴𝑗𝑖 , (D.19)

if we choose 𝛼 = 0 and 𝛽 = 2𝛽𝑆. (The binomial coefficient accounts for the number of
ways of assigning directions 𝐴𝑖 𝑗 to the 𝐴̄𝑖 𝑗 undirected edges.) This observation suggests
that we might use 𝛽𝑆 as a a measure of the (restricted) depth of a hierarchy, and indeed we
observe a correlation between the maximum likelihood value 𝛽̂𝑆 and our own restricted
depth parameter 𝛽0, as shown in Table D.1.

However, it is the other term, Eq. (D.17), that particularly distinguishes SpringRank
from the other models we have considered. This term, which measures the likelihood that
the set of observed matches occurs at all, has no equivalent in the Bradley-Terry model
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and related models. The quantity 𝑚𝑖 𝑗 , which is the expected number of matches between
𝑖 and 𝑗, can be rewritten in the form

𝑚𝑖 𝑗 = 𝑀
𝑊(𝛽𝑆 , 𝑠𝑖 − 𝑠 𝑗)∑
𝑖< 𝑗𝑊(𝛽𝑆 , 𝑠𝑖 − 𝑠 𝑗) , (D.20)

where

𝑊(𝛽𝑆 , 𝑠) =
√

𝛽𝑆
8𝜋

[
𝑒−

1
2𝛽𝑆(𝑠−1)2 + 𝑒− 1

2𝛽𝑆(𝑠+1)2] . (D.21)

(Note that 𝑊(𝛽𝑆 , 𝑠) is symmetric in 𝑠 so the sign of the score difference in Eq. (D.20) has
no effect.) In this formulation the parameter 𝑀 controls the total number of (undirected)
edges in the network and the (properly normalized) probability density 𝑊(𝛽𝑆 , 𝑠𝑖 − 𝑠 𝑗)
controls how they are distributed given the scores 𝑠𝑖 . Figure D.4 shows the form of
𝑊(𝛽𝑆 , 𝑠) for various choices of 𝛽𝑆. For 𝛽𝑆 ≤ 1 there is a single peak at 𝑠 = 0 so that
interactions are preferentially between evenly matched players, but above 𝛽𝑆 = 1 the
function becomes bimodal and increasingly peaked around 𝑠 = ±1, so that players with a
score difference near 1 are more likely to interact.

It is arguably a disadvantage of the SpringRank model that the same parameter 𝛽𝑆
controls both the depth of competition via Eq. (D.18) and the distribution of matches via
Eq. (D.20). Conceptually these are separate processes, and one could make an argument
for a model in which they were controlled by separate parameters, although we have
not taken that approach here—we use the model as originally defined for the sake of
consistency.

In our cross-validation tests we use the maximum likelihood point estimate for the
value of 𝛽𝑆, in keeping with the other models we study. We note, however, that De Bacco
et al. [40], in their original work on SpringRank, used different values of 𝛽𝑆 depending on
whether the results were scored using log-likelihood or accuracy, choosing in each case
the value that gave the best performance according to the measure used. However, unlike
the definition given in [40], our definition of the accuracy is independent of the choice
of 𝛽𝑆.

Finally, we note that the original specification of the SpringRank model also included
an optional Gaussian prior on the scores. We have not adopted this prior in our tests,
since we find that it tends to diminish the performance of the method.
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